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1 Introduction

MQOM (MQ-On-my-Mind) is a signature scheme derived from a zero-knowledge proof-of-
knowledge of a secret solution to a random MQ instance. This zero-knowledge proof leverages
the MPC-in-the-Head (MPCitH) paradigm [IKO+07] and is converted into a signature scheme
using the Fiat-Shamir heuristic. This document specifies MQOMv2, the second version of the
MQOM signature scheme, a second round candidate to the NIST call for additional digital
signature schemes for the post-quantum cryptography standardization process [NIS22].
The proof system in MQOMv2 builds upon the Threshold-Computation-in-the-Head (TCitH)

framework [FR23b]. Like the proof system in MQOMv1 [FR23a; BFR24], this framework trans-
forms an MPC protocol into a zero-knowledge proof-of-knowledge via the MPCitH paradigm,
while committing to secret sharings using GGM seed trees (as first proposed in [KKW18]).
However, the TCitH framework utilizes threshold (Shamir) secret sharing instead of additive
secret sharing. This shift reduces the computational cost of MPC emulation and enables the
exploitation of multiplication homomorphism, offering significant performance improvements.
The TCitH proof system in MQOMv2 can also be interpreted as a variant of VOLE-in-the-
Head [BBD+23], where small VOLE correlations are directly applied in parallel repetitions,
rather than being combined into a larger VOLE correlation.
By transitioning from the original MPCitH proof system (relying on additive secret sharing)

to the TCitH proof system, the size of MQOM signatures has been roughly halved. In particular,
for Category I, MQOMv2 achieves signatures of 2.8–4.2 KB against 6.3–7.9 KB for MQOMv1.
Unless otherwise specified, MQOM should refer to MQOMv2 in the rest of this documentation.

Organization of the document. Section 2 gives an overview of the MQOM signature scheme
as well as a detailed description of the key generation, signature and verification algorithms
and their underlying subroutines. Section 3 explains the selection of parameters and depicts
the proposed instances and their performances. Section 4 provides a security analysis of the
MQOM signature scheme. Section 5 discusses the design choices of MQOM, while Section 6
addresses its advantages and limitations.
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2 Description of the MQOM signature scheme

2.1 Overview

The Threshold-Computation-in-the-Head (TCitH) framework specializes the MPC-in-the-Head
paradigm with threshold (Shamir) secret sharing [FR23c; FR23b]. In this framework, the prover
commits to a Shamir secret sharing JxK of the secret value x and simulates an MPC protocol
to verify the validity of x (e.g., as the solution to a public MQ instance). During this process,
the prover reveals the publicly broadcast sharings JαK to the verifier. The verifier, in turn,
checks certain properties of JαK to assess the validity of x and finally challenge the prover to
open specific parties to verify the correctness of the MPC simulation. The TCitH framework
is closely related to the VOLE-in-the-Head (VOLEitH) framework [BBD+23], where the prover
commits to VOLE correlations of the form x · ∆ + rx (for a random rx). The prover then
executes a protocol that computes and transmits to the verifier VOLE correlations of the form
α ·∆+ rα (analogous to the broadcast sharings JαK), before ultimately revealing x ·∆+ rx for
a challenge value of ∆.
Both frameworks can be interpreted as composing of a polynomial interactive oracle proof

(polynomial IOP or PIOP) and a (zero-knowledge) polynomial commitment scheme (PCS), an
increasingly common approach in the design of proof systems [SZ22; Tha23]. In the case of
TCitH, committing to a Shamir secret sharing JxK corresponds to committing to the underlying
polynomial Px. Revealing a share JxKi is equivalent to disclosing an evaluation Px(ωi). Similarly,
VOLEitH commits to a VOLE correlation, which corresponds to a degree-1 polynomial Px(∆) =
x ·∆+ rx, with the prover later revealing an evaluation of this polynomial.
This section provides an overview of the MQOM signature scheme and the underlying TCitH-

Πpc proof system [FR23b] within the PIOP+PCS formalism. We begin by recalling the def-
inition of the MQ problem. Next, we introduce the PIOP and PCS components that define
the MQOM zero-knowledge proof of knowledge (ZK PoK). Finally, we discuss the compilation
of this ZK PoK into the MQOM signature scheme using parallel repetitions, the Fiat-Shamir
transform, and additional optimizations.

2.1.1 MQ problem

We recall the definition of the MQ problem (in matrix form) which is the core hardness assump-
tion of the MQOM signature scheme.

Definition 1 (Multivariate Quadratic Problem). Let F be a finite field and let m,n be positive
integers. The Multivariate Quadratic (MQ) problem with parameters (F,m, n) is the following
problem:

Let (Ai)i∈[m], (bi)i∈[m], x and y = (y1, . . . , ym) be such that:

1. x is uniformly sampled from Fn,

2. for all i ∈ [m], Ai is uniformly sampled from Fn×n,

3. for all i ∈ [m], bi is uniformly sampled from Fn,

4. for all i ∈ [m], yi is defined as yi := x⊺Aix+ b⊺i x.

From
(
{Ai}, {bi}, y

)
, find x.
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2.1.2 MQOM polynomial IOP

Formally, a PIOP is an interactive proof in which the prover can send a polynomial oracle
[P1, . . . , Pn] to the verifier for polynomials P1, . . . , Pn ∈ K[X] of prescribed degree d. From such
a polynomial oracle, the verifier can then query some evaluations. Namely, for a query r to the
oracle, the latter provides the verifier with the polynomial evaluations P1(r), . . . , Pn(r). The
verifier has the guaranty that some polynomial of degree d are embedded in the oracle and that
their evaluations in r match the oracle’s response.
In the MQOM PIOP, the prover aims to convince the verifier that they know an MQ solution

x ∈ Fn such that F (x) = (0, . . . , 0) ∈ Fm, where

F = (f1, . . . , fm) with fi : x 7→ x⊺Aix+ b⊺i x− yi . (1)

This protocol is the PIOP equivalent of the QuickSilver protocol [YSW+21] within the VOLE-in-
the-Head framework [BBD+23] or the Πpc MPC protocol within the TCitH framework [FR23b].

Notions. Let K be an extension field of F and Ω ⊆ K, an evaluation domain (i.e. the points
on which the polynomial oracle can be queried). We denote K[X]⩽d the set of polynomials of
degree ≤ d with coefficients in K and we shall consider vector polynomials, which are vectors with
polynomial coordinates. We consider the homogeneous application of F to a degree-1 vector
polynomial P ∈

(
K[X]⩽1

)n
, which results in a degree-2 vector polynomial F (P ) ∈

(
K[X]⩽2

)m
such that

F (P )(X) = P (X)⊺AiP (X) + b⊺iP (X) ·X − yi ·X2 .

We shall denote by P (∞) ∈ Kn the leading coefficient vector of a vector polynomial P . In
particular, for P ∈ K[X]⩽1, P (∞) denotes the degree-1 coefficient vector, while for F (P ) ∈
K[X]⩽2, F (P )(∞) denotes the degree-2 coefficient vector. For some vector polynomial Px ∈(
K[X]⩽1

)n
such that Px(∞) = x, we thus obtain F (P )(∞) = F (x), which is the all-0 vector if

and only if x is the MQ solution associated to F .

PIOP: simple version. We start with a simplified version of the PIOP underlying MQOM,
which is depicted in Figure 1. The prover first picks random vector polynomials Px ∈

(
K[X]⩽1

)n
and Pu ∈

(
K[X]⩽1

)m
such that Px(∞) = x (while Pu is fully random). Then they send an oracle

to these polynomials to the verifier. The prover further compute Pα = Pu + F (Px) and sends
it in clear (i.e. not as an oracle) to the verifier. The verifier samples a random point r in the
evaluation domain Ω and queries the oracle to obtain the evaluations Px(r), Pu(r). They finally
check that Pα(r) = Pu(r) + F (Px(r)).
The vector polynomial Pz := F (Px) is of degree 1 if and only if Pz(∞) = F (Px(∞)) =

(0, . . . , 0) ∈ Km, meaning that x = Px(∞) is a valid solution to the MQ instance defined by F .
The soundness of this protocol follows from the Schwartz–Zippel lemma. Assume that Pα(r) =
Pu(r) + F (Px(r)) holds for 3 different points of Ω, then because Px, Pu, Pα are guaranteed to
be of degree 1, we must have Pα = Pu + F (Px) and hence F (x) = 0 (i.e. the prover indeed
knows a solution x). Conversely, in the presence of a malicious prover (who does not know a
right solution x), we can only have Pα(r) = Pu(r) + F (Px(r)) for at most two values r of Ω.
The soundness error of the PIOP is hence of 2/|Ω|.
The zero-knowledge property of this protocol holds for two reasons. First, thanks to the

addition of the random vector polynomial Pu, the vector polynomial Pα is further uniformly
random. Then, any evaluations Px(r), Pu(r) are independent of x thanks to the randomness
involved in these polynomials.
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Prover Verifier

Px ←
(
K[X]⩽1

)n
s.t Px(∞) = x

Pu ←
(
K[X]⩽1

)m
[Px,Pu]−−−−−−−−−−−−→

Pα = Pu + F (Px) ∈
(
K[X]⩽1

)m
Pα−−−−−−−−−−−−→

r ← Ω ⊆ K
Query Px(r), Pu(r) from [Px, Pu]

Check Pα(r) = Pu(r) + F (Px(r))

Figure 1: Polynomial IOP underlying MQOM (simple version).

Remark 1. The original TCitH-Πpc protocol does not encode the secret x as the leading coef-
ficient of Px but as its constant term (as for the original Shamir’s secret sharing). While this
choice has not impact on the soundness nor on the communication, choosing the leading term
has some advantages in terms of computation (see Section 5 for further discussion).

Besides the polynomial oracle, the communication cost of the above PIOP is the size of Pα

which is made of 2m elements of the extension field K. We now described two ways to batch
the coordinates of Pα enabling to substantially lower this communication cost.

Batching with field embedding. The size of the vector polynomial Pα can be reduced by a
factor µ, the extension degree of K/F. Let β1, . . . , βµ an F-basis of K and let ϕ the F-linear
field-embedding isomorphism:

ϕ : (e1, . . . , eµ) ∈ Fµ 7→
µ∑

i=1

ei · βi ∈ K . (2)

In what follows, m is assumed to be a multiple of µ, which is always the case with our considered
parameters. We further denote:

Φ : (e1, . . . , em) ∈ Fm 7→ (ϕ(e1, . . . , eµ), ϕ(eµ+1, . . . , e2µ), . . . , ϕ(em−µ, . . . , em)) ∈ K
m
µ . (3)

Recall that the protocol aims to prove Pz(∞) = (0, . . . , 0), where Pz := F (Px) and where
Pz(∞) denotes the degree-2 coefficient vector of Pz. Although the polynomial Px belongs to(
K[X]⩽1

)n
, its leading term is defined as Px(∞) = x ∈ Fn. Assume that Px(∞) is ensured to

belong to Fn by the polynomial oracle [Px, Pu] (this property is indeed ensured by the polynomial
commitment described hereafter in Section 2.1.3). By definition of F , we then have Pz(∞) ∈ Fm

and hence:

Pz(∞) = (0, . . . , 0) ∈ Fm ⇐⇒ Φ(Pz)(∞) = (0, . . . , 0) ∈ K
m
µ .

This means that Pα can be defined as

Pα = Pu +Φ(F (Px)) ∈
(
K[X]⩽1

)m
µ
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with Pu ∈
(
K[X]⩽1

)m
µ . Introducing this tweak in the above protocol does not change its

soundness, thanks to the following equivalence:

Pα ∈
(
K[X]⩽1

)m
µ ⇐⇒ Φ(F (Px)) ∈

(
K[X]⩽1

)m
µ

⇐⇒ Φ(F (Px))(∞) = (0, . . . , 0) ∈ K
m
µ

⇐⇒ F (Px)(∞) = F (x) = (0, . . . , 0) ∈ Fm

Batching with random combinations. To further reduce the size of Pα, we can use the stan-
dard approach to batch the verification of several relations using random linear combinations.
In our context, this means batching the m/µ coordinates of Φ(F (Px)) into η random linear

combinations for some parameters η ∈ N. Let Γ ∈ Kη×m
µ , a matrix randomly sampled by the

verifier. The prover now define Pα as:

Pα = Pu + Γ · Φ(Pz) ∈
(
K[X]⩽1

)η
with Pu ∈

(
K[X]⩽1

)η
and Pz = F (Px) ∈

(
K[X]⩽1

)m
. We then have:

Pr
[
Γ · Φ(Pz)(∞) = (0, . . . , 0) | Φ(Pz)(∞) ̸= (0, . . . , 0)

]
≤ 1

|K|η
.

For a target λ-bit security, selecting η := ⌈λ/ log2 |K|⌉ makes the above soundness error ≤ 2−λ.

PIOP: full version. Figure 2 provides the description of the PIOP integrating the two sub-
sequent batching strategies. While MQOM always relies on the field-embedding batching, the
random-combination batching is optional. When disabled, the PIOP skips the step of sampling
Γ by the verifier and sending it to the prover (represented between dashed lines on Figure 2).
Γ is then simply defined as the identity matrix Γ = Iη ⊆ Kη×η with η = m/µ.

Prover Verifier

Px ←
(
K[X]⩽1

)n
s.t Px(∞) = x

Pu ←
(
K[X]⩽1

)η
[Px,Pu]−−−−−−−−−−−−→

Γ← Kη×m
µ

Γ←−−−−−−−−−−−−

Pz = F (Px) ∈
(
K[X]⩽1

)m
Pα = Pu + Γ · Φ(Pz) ∈

(
K[X]⩽1

)η
Pα−−−−−−−−−−−−→

r ← Ω ⊆ K
Query Px(r), Pu(r) from [Px, Pu]

Compute Pz(r) = F (Px(r))

Check Pα(r) = Pu(r) + Γ · Φ(Pz(r))

Figure 2: Polynomial IOP underlying MQOM (full version).
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Disabling random-combination batching makes theMQOM zero-knowledge proof-of-knowledge
a simple sigma protocol. This comes at a moderate communication cost (depending of the pa-
rameters) thanks to the field-embedding batching which significantly reduces the communication
overhead in the context. On the other hand, when random-combination batching is enabled,
the main purpose of the field-embedding batching is to reduce the computation overhead. More
precisely, we could skip the application of Φ and sample a larger matrix Γ ∈ Kη×m. While this
would not change the communication or the soundness of the PIOP, this would make sampling
Γ as well as computing the product Γ · Pz heavier.

2.1.3 Line commitment scheme

To compile the above polynomial IOP into a zero-knowledge proof of knowledge (ZK-PoK), the
polynomial oracle is replaced by a polynomial commitment scheme. This means that the prover
sends a commitment Com(Px, Pu) to the polynomials Px, Pu in place of the oracle. Later on,
the query from the verifier to the oracle is replaced by an evaluation opening protocol:

1. the verifier sends the evaluation point r to the prover,

2. the prover replies with evaluations vx = Px(r), vu = Pu(r) along with an opening proof π,

3. the verifier checks π and, in case of success, accepts vx, vu as valid evaluations.

The commitment scheme should be:

• binding : the commitment Com(Px, Pu) defines unique polynomials Px, Pu and it should
be hard for a mallicious prover to later come up with evaluations vx, vu and an opening
proof π passing the verification while vx ̸= Px(r) or vu ̸= Pu(r);

• hiding/zero-knowledge: the verifier does not learn anything more than vx, vu about Px, Pu.

In the context of this specification, the polynomials Px and Pu are limited to be of degree 1.
In consequence, we shall use the terminology of line commitment scheme. We explain the line
commitment scheme used in MQOM hereafter. This construction relies on a GGM seed tree.

GGM seed tree. A GGM seed tree consists in pseudorandomly expanding a root seed rseed

into N leaf seeds lseed[0], . . . , lseed[N − 1] using a binary tree. The process is summarized
by {

node[1]← rseed

(node[2i], node[2i+ 1])← SeedDerive(node[i]) for 1 ≤ i ≤ N − 1
(4)

where SeedDerive is a seed derivation function. The leaf seeds are then defined as the last N
nodes, namely lseed[i] := node[N + i] for all i ∈ [0, N − 1]. The structure of a GGM seed
tree and underlying node numbering are illustrated on Figure 3. In the scope of the present
specification, the number of leaves N is always a power of two.
The GGM tree structure enables to reveal all-but-one leaf seeds from log2(N) nodes of the

tree. Let i∗ ∈ [0, N − 1] be the index of the leaf seed that should remain hidden. Any node on
the path from the hidden leaf lseed[i∗] = node[N + i∗] to the root of the tree should remain
hidden (since lseed[i∗] can be derived from any of those nodes). The indexes of the node on
this hidden path belong to the following set:

H = {⌊(N + i∗)/2j⌋ | 0 ≤ j ≤ log2(N)− 1} .



MQOM: MQ on my Mind 7

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

root seed

leaf seed 0 leaf seed 7…leaf seed 1

Figure 3: GGM tree structure and node numbering.

On the other hand, the sibling path, which is made of the siblings of the hidden nodes, can be
revealed without giving any information lseed[i∗]. According to the binary tree structure, the
sibling of node[i] is node[i⊕ 1]. The sibling path of lseed[i∗] is hence defined as:

path = {node[i⊕ 1] | i ∈ H} .

By running the tree derivation of Equation 4 from all the seeds in the sibling path, one recon-
structs a partial tree composed of all the nodes but the hidden path. In particular, this partial
tree includes all the leaves but the hidden leaf lseed[i∗].
GGM seed trees have been introduced in the context of MPC-in-the-Head to commit additive

secret sharings with efficient opening of all-but-one shares [KKW18]. From a random root seed
rseed, one expands a GGM seed tree to obtain the leaf seeds lseed[0], . . . , lseed[N − 1].
Then, each leaf seed is expanded into a share:

x̄i ∈ Fn ← PRG(lseed[i]) ,

and a correction value ∆x is defined as:

∆x = x−
N−1∑
i=0

x̄i . (5)

By definition, (x̄0 + ∆x), x̄1, . . . , x̄N−1 forms an additive secret sharing of x. This additive
sharing is committed by deriving a commitment for each seed:

ls com[i]← SeedCommit(lseed[i])

and sending a global commitment:

com← Commit(ls com[0], . . . , ls com[N − 1],∆x)

to the verifier. Later on, the verifier can challenge the prover to open all the additive shares of
x but one, say the share of index i∗. The prover then reveals the sibling path of lseed[i∗], the
correction value ∆x and the commitment ls com[i∗]. From all the leaf seeds (but lseed[i∗]),
the verifier can expand all the shares x̄i (but x̄i∗) and correct x̄0 with ∆x. The verifier can also
recompute the commitments ls com[i], for all i ̸= i∗, and together with lseed[i∗] and ∆x,
recompute and check the global commitment.
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Line commitment from GGM seed tree. As described in the TCitH framework [FR23b],
one can use a sharing conversion technique from [CDI05] to turn an all-but-one additive secret
sharing (a.k.a. replicated secret sharing) into a Shamir’s secret sharing, with underlying poly-
nomial Px encoding x. Then, revealing all-but-one additive shares of x amounts to revealing
one Shamir’s share of x, i.e., one evaluation of the polynomial Px. A similar technique was also
previously described in the VOLE-in-the-Head framework [BBD+23] to commit small VOLE
correlations based on the small-field VOLE construction from [Roy22].
The committed degree-1 polynomial (or line) is defined as:

Px = ∆xP0 +
N−1∑
i=0

x̄iPi ∈ K[X]⩽1 (6)

where P0, . . . , PN−1 ∈ K[X]⩽1 are fixed degree-1 polynomials defined as:{
Pi(ωi) = 0

Pi(∞) = 1
(7)

for some predefined evaluation points Ω = {ω0, . . . , ωN−1} ⊆ K. From this definition, we have
that Px encodes the secret x by:

Px(∞) = ∆x +
N−1∑
i=0

x̄i = x .

Moreover, the evaluation of Px in a point ωi∗ ∈ Ω can be derived from the all-but-one additive
sharing of index i∗. Namely, from all the x̄i but x̄i∗ , the verifier can recompute:

Px(ωi∗) = ∆xP0(ωi∗) +
N−1∑
i=0

x̄iPi(ωi∗) = ∆xP0(ωi∗) +
∑
i ̸=i∗

x̄iPi(ωi∗)

where the above equality holds because Pi∗(ωi∗) = 0. Since any other evaluation of Px would
require the knowledge of x̄i∗ , the verifier only learns Px(ωi∗) from the all-but-one opening.

Following Equation 6 and Equation 7, and assuming ω0 = 0, we have Pi(X) = X − ωi for all
i ∈ [0, N − 1], and:

Px(X) = x ·X −
N−1∑
i=0

ωi · x̄i .

Remark 2. As mentionned in Remark 1, the original TCitH scheme [FR23b] does not encode
the secret x as Px(∞) but as Px(0) (as in the original Shamir’s secret sharing). For this reason,
the Pi polynomials are defined such that Pi(ωi) = 0 and Pi(0) = 1 in [FR23b]. In the present
specification, we choose to encode x in Px(∞) which offers some advantages, as discussed in
Section 5.

Committing the random polynomial Pu works the same way but without correction value.
Namely, the additive shares ūi ∈ Kη are also pseudorandomly sampled from the leaf seeds
lseed[i] for all i ∈ [0, N − 1] and Pu is defined as:

Pu(X) =

N−1∑
i=0

ūiPi =
(N−1∑

i=0

ūi

)
·X −

N−1∑
i=0

ωi · ūi ∈
(
K[X]⩽1

)η
.
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Correlated tree optimization. The correlated half-tree technique introduced in [GYW+23]
enables to slightly reduce the communication cost of a GGM all-but-one sharing commitment.
For a fixed δ ∈ {0, 1}λ (where {0, 1}λ is the definition space of the seeds), the correlated tree
technique maintains the following invariant. At any given level in the tree, the XOR of all the
seeds equal δ. To enforce this property, the definition of the tree is modified as follows:{

node[2]← rseed

node[3]← rseed⊕ δ
and

{
node[2i]← SeedDerive(node[i])

node[2i+ 1]← node[2i]⊕ node[i]

for 1 ≤ i ≤ N − 1. One can indeed check that, for any j ≥ 1, we thus get:

δ = node[2]⊕ node[3]

= node[4]⊕ node[5]⊕ node[6]⊕ node[7]

...

=
2j+1−1⊕
i=2j

node[i] .

Then redefining:
x̄i ∈ Fn ← lseed[i] ∥ PRG(lseed[i]) ,

we get that the λ first bits of
∑N−1

i=0 x̄i equal δ (assuming that F is a binary field so that the
field addition matches the XOR). By defining δ as the λ first bit of x, Equation 5 then implies
that the λ first bits of ∆x equal 0λ (the all-0 λ-bit string). We can thus save λ bits in the
communication of ∆x.

Wrapping up. When plugging the above line commitment scheme into the PIOP of Figure 2,
we obtain the MQOM ZK PoK depicted in Figure 4. We note that this PoK is extractable
knowledge sound under an idealized assumption on the SeedCommit primitive (e.g. in the
random oracle or ideal cipher model). This leads to a tight EUF-CMA security since the
reduction can extract the secret from any valid commitment.

2.1.4 Compilation to signature scheme

The MQOM signature scheme is constructed in two steps: first, we amplify the soundness of
the MQOM ZK PoK (Figure 4) through parallel repetition; then, we apply the Fiat-Shamir
transform to render it non-interactive and message-bound. In addition, we introduce some
tweaks to lower the signature size and improve security and performances.

Parallel repetitions. The MQOM ZK PoK (Figure 4) has round-by-round soundness with
soundness error ϵ1 = 1/|K|η for the (optional) batching round and ϵ2 = 2/|Ω| = 2/N for the
next round (see Section 2.1.2). To achieve a soundness error below 2−λ for a target security
of λ bits, η is fixed to η = λ/ log2 |K| (the result of this division is always an integer for our
considered parameters). For the next round, we rely on parallel repetition. Namely, the protocol
is repeated τ times to make (2/N)τ sufficiently small.

Specifically, the considered line commitment is turned into a batch line commitment (BCL),

which commits τ pairs of polynomials (P
(0)
x , P

(0)
u ), . . . , (P

(τ−1)
x , P

(τ−1)
u ). For each of them, a

polynomial P
(e)
α = P

(e)
u + Γ · Φ(F (P (e)

x )) is computed and sent to the verifier, where (in case
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Prover Verifier

rseed← {0, 1}λ

(lseed[i])0≤i<N ← GGM.Expand(rseed)

ls com[i]← SeedCommit(lseed[i]), ∀i ∈ [0, N − 1]

(x̄i, ūi)← PRG(lseed[i]), ∀i ∈ [0, N − 1]

∆x = x−
∑

i x̄i

Px = ∆xP0 +
∑

i x̄iPi

Pu =
∑

i ūiPi

com← Commit
(
(ls com[i])0≤i<N ,∆x

)
com−−−−−−−−−−−−→

Γ← Kη×m
µ

Γ←−−−−−−−−−−−−

Pz = F (Px) ∈
(
K[X]⩽1

)m
Pα = Pu + Γ · Φ(Pz) ∈

(
K[X]⩽1

)η
Pα−−−−−−−−−−−−→

i∗ ← [0, N − 1]

r = ωi∗ ∈ Ω ⊆ K
i∗←−−−−−−−−−−−−

path← GGM.SiblingPath(rseed, i∗)

opening = (path,∆x, ls com[i∗])
opening−−−−−−−−−−−−→

(lseed[i])i ̸=i∗ ← GGM.Partial(rseed)

ls com[i]← SeedCommit(lseed[i]), ∀i ̸= i∗

com′ ← Commit
(
(ls com[i])0≤i<N ,∆x

)
Check com′ = com

(x̄i, ūi)← PRG(lseed[i]), ∀i ̸= i∗

Px(r) = ∆xP0(r) +
∑

i ̸=i∗ x̄iPi(r)

Pu(r) =
∑

i ̸=i∗ ūiPi(r)

Compute Pz(r) = F (Px(r))

Check Pα(r) = Pu(r) + Γ · Φ(Pz(r))

Figure 4: MQOM zero-knowledge proof of knowledge.

of batching) the matrix Γ is the same for each repetition. The verifier then pick τ indexes
i∗[0], . . . , i∗[τ − 1], each leading to an evaluation point r(e) ∈ Ω. The prover finally reveal the

opening data for the verifier to check and compute the evaluations P
(e)
x (r(e)), P

(e)
u (r(e)).

Concretely, the BCL scheme relies on τ parallel GGM trees, each giving rise to its own
set of leaf seeds (lseed[e][i])0≤i<N , corresponding commitments, (ls com[e][i])0≤i<N , and
correction value ∆x[e], for e ∈ [0, τ − 1]. The global commitment is then defined as:

com← Commit(c(0), . . . , c(τ−1),∆x[0], . . . ,∆x[τ − 1])

where c(e) ← Commit(ls com[e][0], . . . , ls com[e][τ −1]). Finally, the global opening consists
of the opening tuple (path[e],∆x[e], ls com[e][i∗[e]]) for each execution e ∈ [0, τ − 1].

Hash commitment of Pα. To reduce the communication of the ZK PoK protocol, a standard

optimization is to send a hash commitment of the polynomials P
(0)
α , . . . , P

(τ−1)
α instead of trans-

mitting them in full. Doing so, the prover only needs to send the leading coefficient α
(e)
1 ∈ Kη for

each of these polynomial rather than the full pair of coefficients (α
(e)
0 , α

(e)
1 ) ∈ (Kη)2. From the
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open evaluations P
(e)
x (r(e)), P

(e)
u (r(e)), the verifier deduces P

(e)
α (r(e)) an compute a candidate

value for the constant term:
α
(e)
0 = P (e)

α (r(e))− α(e)
0 · r

(e) .

Finally, the verifier checks this against the hash commitment. This technique effectively halves

the communication cost (or signature footprint) associated with the polynomials P
(0)
α , . . . , P

(τ−1)
α .

Fiat-Shamir transform. In the following, we shall denote by com1 the BLC commitment and

com2 the hash commitment of the polynomials P
(0)
α , . . . , P

(τ−1)
α following the above optimization.

In the first (optional) round, the application of Fiat-Shamir consists in deriving the matrix

Γ ∈ Kη×m
µ from the commitment by a call to an extendable output hash function:

Γ← XOF(com1) .

In the second round, the application of Fiat-Shamir consists in deriving the challenge indexes
i∗[0], . . . , i∗[τ − 1] from the commitments com1 and com2. We further input the message as
well as the public key is this hash computation, which gives:

(i∗[0], . . . , i∗[τ − 1])← XOF(pk, com1, com2, msg) .

Grinding. To reduce the number of parallel repetitions, we employ grinding. Namely, we
include a w-bit proof-of-work increasing the number of iterations of the second hash by a factor
of 2w on average for a grinding parameter w. The number of repetitions is then relaxed to
satisfy (

2

N

)τ

≤ 1

2λ−w
, (8)

namely, we fix τ := ⌈(λ− w)/(log2(N)− 1)⌉.
The second Fiat-Shamir hash is then performed as follows. One first compute a hash value

hash← Hash(pk, com1, com2, msg)

and then iterates
(i∗, val)← XOF(hash, nonce)

where i∗ = (i∗[0], . . . , i∗[τ−1]) ∈ [0, N−1]τ , val ∈ [0, 2w−1], and nonce ∈ [0, 232−1] a 32-bit
counter. The above computation is repeated by increasing nonce until obtaining val = 0. The
succeeding nonce value is included into the signature so that the verifier only needs to run the
right XOF computation once. The verifier further checks that the XOF output satisfies val = 0
to accept the signature.
In the random oracle model (ROM), any attempt to forge a signature requires the adversary

to make a random oracle query to get the associated challenge i∗. Using grinding, each such
random oracle query has only a probability 2−w to yield a valid grinding value val = 0. As a
result, the (amplified) second-round soundness error scales from ϵ1 = (2/N)τ down to ϵ1 · 2−w

from which we get the relaxation of Equation 8. The reader is referred to [Sta21] for a formal
argument.
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Seed derivation and commitment in GGM trees. The functions SeedDerive, SeedCommit,
and PRG are defined based on a block cipher:

Enc : (key, ptx) ∈ {0, 1}λ × {0, 1}λ 7→ ctx ∈ {0, 1}λ , (9)

which is instantiated as AES-128 (for λ = 128) or Rijndael-256-256 (for λ = 192 and λ = 256).
This choice ensures efficiency by leveraging the AES hardware instructions available on modern
CPUs.
For security, the derivation, commitment and expansion of seeds must incorporate a random

salt, which is sampled at the beginning of the signing process and included as part of the
signature. Since seeds are only λ bits long, using this salt mitigates the risk of collisions in tree
derivation and prevents accelerated exhaustive searches for hidden seeds. Additionally, this salt
is modified to enforce domain separation between different calls to SeedDerive and SeedCommit
within a single signature computation.
We employ a Davies-Meyer construction to transform the block cipher Enc into the seed

derivation and commitment primitives. Here, the salt acts as the key, while the seed is used
as the plaintext and also introduced in the output through a feed-forward mechanism. Given
the XOR-invariant properties of correlated GGM tree optimizations, a simple XOR-based feed-
forward would make the seed derivation process invertible. Instead, as suggested in [GKW+20],
we use a F2-linear orthomorphism ψ, defined as:

ψ : (xl ∥ xr) ∈ {0, 1}λ 7→ (xl ⊕ xr ∥ xl) . (10)

Concretely, we define encryption with feed-forward (EncFF) as follows:

EncFF : (seed, tweak) 7→ Enc(salt⊕ tweak, seed)⊕ ψ(seed) . (11)

This allows us to define the seed derivation function as:

SeedDerive(seed, tweak) = EncFF(seed, tweak) , (12)

and the seed commitment function as:

SeedCommit(seed, tweak) = EncFF(seed, tweak) ∥ EncFF(seed, tweak⊕ 1) . (13)

The domain-separator tweaks are defined to ensure security. For seed derivation, we assign
a unique tweak for each pair (e, j), where e ∈ [0, τ − 1] denotes the execution index, and
j ∈ [0, log2(N)− 1] represents the height of the current node in the tree. This guarantees that
any two seeds in the revealed sibling paths result from distinct derivation functions, preventing
accelerated preimage attacks. For commitment, we use a distinct pair (tweak, tweak ⊕ 1) per
execution index e ∈ [0, τ − 1] (and which are also disjoint from the seed derivation tweaks), en-
suring that hidden seed commitments are derived from separate commitment functions, thereby
thwarting accelerated preimage attacks.



MQOM: MQ on my Mind 13

2.2 Notations

Mathematical notations. We summarize the mathematical notations used in the algorithmic
description of MQOM in Table 1. The concrete instantiations of F and K, with underlying
irreducible polynomials, the evaluation points ω0, . . . , ωN−1, and the F-basis of K, β1, . . . , βµ,
are defined in Section 3.

Table 1: Mathematical notations.

F The base field, a finite field of characteristic 2

K The extension field, a finite extension of F
Ω = {ω0, . . . , ωN−1} The evaluation domain, a subset of K
{β1, . . . , βµ} An F-basis of K
F[X]⩽1 Set of polynomials of degree ≤ 1 with coefficients from F
K[X]⩽1 Set of polynomials of degree ≤ 1 with coefficients from K
ϕ Field-embedding isomorphism ϕ : Fµ → K
Φ Block-wise field-embedding isomorphism ϕ : Fm → K

m
µ

ψ Linear orthomorphism ψ : {0, 1}λ → {0, 1}λ

| · |2 Bit-size of a field-element vector

| · |8 Byte-size of a field-element vector

Iη Identity matrix on Kη×η

0ℓ All-0 ℓ-bit string

We recall the definition of the three morphisms ϕ, Φ and ψ. For β1, . . . , βµ an F-basis of K,
we let ϕ be the F-linear field-embedding isomorphism:

ϕ : (e1, . . . , eµ) ∈ Fµ 7→
µ∑

i=1

ei · βi ∈ K .

The block-wise field-embedding isomorphism Φ is then defined as:

Φ : (e1, . . . , em) ∈ Fm 7→ (ϕ(e1, . . . , eµ), ϕ(eµ+1, . . . , e2µ), . . . , ϕ(em−µ, . . . , em)) ∈ K
m
µ . (14)

The F2-linear orthomorphism ψ is defined as:

ψ : (xl ∥ xr) ∈ {0, 1}λ 7→ (xl ⊕ xr ∥ xl) . (15)

Notations for MQOM parameters. The notations for the various parameters of MQOM are
summarized in Table 2. The specific instantiations of these parameters, which define the differ-
ent instances of MQOM, are provided in Section 3.

Notations for algorithmic description. The variables used in the algorithmic description of
MQOM, along with their respective definition domains, are summarized in Table 3.
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Table 2: Parameters of the MQOM signature scheme.

MQ parameters:

F Base field

n Number of unknowns

m Number of equations

Proof system parameters:

λ Security parameter

µ Extension degree µ = [K : F]
N Size of the evaluation domain N = |Ω|
η Number of internal repetitions of the proof system

τ Number of external repetitions of the proof system

w Grinding proof-of-work parameter
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Table 3: Notations of the MQOM signature scheme.

x Secret MQ solution Fn

Ai Quadratic-part matrix of the i-th MQ equation Fn×n

bi Linear-part vector of the i-th MQ equation Fn

yi Constant part of the i-th MQ equation F
seed key Master seed for key generation {0, 1}2λ

seed eq[i− 1] Seed for MQ equations {Ai}, {bi} {0, 1}2λ

com1 BLC commitment {0, 1}2λ

com2 Hash commitment com2 = Hash(α0, α1) {0, 1}2λ

key BLC opening key key = (node,∆x′) –

opening BLC opening opening = (path, out ls com,∆x′) –

i∗ Hidden-leaf indexes i∗ = (i∗[0], . . . , i∗[τ − 1]) [0, N − 1]τ

nonce Grinding nonce [0, 232 − 1]

val Grinding test value [0, 2w − 1]

batching Boolean for enabling / disabling the batching variant {True,False}
x0 Coefficient array x0 = (x0[0], . . . , x0[τ − 1])

(
Kn

)τ
u0 Coefficient array u0 = (u0[0], . . . , u0[τ − 1])

(
Kη

)τ
u1 Coefficient array u1 = (u1[0], . . . , u1[τ − 1])

(
Kη

)τ
α0 Coefficient array α0 = (α0[0], . . . , α0[τ − 1])

(
Kη

)τ
α1 Coefficient array α1 = (α1[0], . . . , α1[τ − 1])

(
Kη

)τ
x eval Evaluation array x eval = (x eval[0], . . . , x eval[τ − 1]) (Kn)τ

u eval Evaluation array u eval = (u eval[0], . . . , u eval[τ − 1]) (Kη)τ

mseed Signature master seed {0, 1}λ

salt Signature salt {0, 1}λ

rseed Array rseed = (rseed[0], . . . , rseed[τ − 1]) –

rseed[e] GGM root seed for execution e {0, 1}λ

lseed Array lseed = (lseed[0], . . . , lseed[τ − 1]) –

lseed[e] Array lseed[e] = (lseed[e][0], . . . , lseed[e][N − 1]) –

lseed[e][i] Leaf seed of index i for execution e {0, 1}λ

ls com Array ls com = (ls com[0], . . . , ls com[τ − 1]) –

ls com[e] Array ls com[e] = (ls com[e][0], . . . , ls com[e][N − 1]) –

ls com[e][i] Leaf seed commitment of index i for execution e {0, 1}2λ

node Array node = (node[0], . . . , node[τ − 1]) –

node[e] Array node[e] = (node[e][2], . . . , node[e][2N + 1]) –

node[e][j] Node seed of index j for execution e {0, 1}λ

path Array path = (path[0], . . . , path[τ − 1]) –

path[e] Array path[e] = (path[e][0], . . . , path[e][ log2(N)− 1]) –

path[e][j] Sibling-path seed of index j (from leaf to root) for execution e {0, 1}λ

exp[e][i] Expanded leaf seed {0, 1}|x|2+|u|2−λ
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2.3 Data representation

The elementary data type in MQOM is a byte string. Any other data types, such as bit-strings,
vectors of field elements, tuples or arrays, are serialized and represented as byte strings in input
and output of the MQOM algorithms. We detail hereafter how these data types are serialized
into byte strings.

In the algorithms presented in the following sections, we use the Serialize routine to explicitly
apply the serialization process depicted below. On the other hand, the Parse routine peforms
the inverse operation with the output format implicit from the context.

Bit-string. A bit-string is an element from {0, 1}ℓ for some ℓ ∈ N (most of the time ℓ = λ ∈
{128, 192, 256} or ℓ = 2λ ∈ {256, 384, 512}). A bit-string is naturally represented as a byte-
string of size ⌈ℓ/8⌉. Whenever ℓ is not a multiple of 8, the last (ℓ mod 8) bits of the bit-string
are the least significant bits in the last byte.

The different variants of MQOM involve three different fields: F2, F256 and F216 . Below, we
describe the serialization process for vectors of field elements for each of these fields.

Vectors of F2-elements. An element of F2 is naturally represented on a single bit. Vectors
from Fℓ

2 are only serialized for ℓ a multiple of 8. A vector v = (v1, . . . , vℓ) ∈ Fℓ
2 is serialized as:

Serialize(v) = B(v1, . . . , v8) ∥ . . . ∥ B(vℓ−7, . . . , vℓ)

where B is the byte-grouping function defined as:

B(b0, . . . , b7) =
7∑

i=0

2i · int(bi)

with int the natural mapping F2 → {0, 1} ⊆ N.

Vectors of F256-elements. An element of F256 is naturally represented as a byte. Specifically,
an element e ∈ F256 is represented as a tuple (e0, . . . , e7) ∈ F8

2 such that e =
∑7

i=0 ei · ξi for
ξ a primitive element of F256 over F2 (i.e. F256 = F2[ξ]). The byte representation of such an
element is defined as:

byte(e) = B(e0, . . . , e7) ⇔ e =
7∑

i=0

ei · ξi .

A vector (v1, . . . , vℓ) ∈ Fℓ
256 is naturally serialized as:

Serialize(v) = byte(v1) ∥ . . . ∥ byte(vℓ) .

Vectors of F216-elements. An element e ∈ F216 is represented as a pair (e0, e1) ∈ F256 × F256

such that e = e0+e1 ·ν for ν a primitive element of F216 over F256 (i.e. F216 = F256[ν]). Such an
element of F216 is serialized as byte(e0) ∥ byte(e1). A vector (v1, . . . , vℓ) ∈ Fℓ

216 is hence naturally
serialized as:

Serialize(v) = byte(v1,0) ∥ byte(v1,1) ∥ . . . ∥ byte(vℓ,0) ∥ byte(vℓ,1)

where vi = vi,0 + vi,1 · ν for all i ∈ [1, ℓ].

The concrete values of ξ and ν which define the representation of F256 and F216 are provided
in Section 3.
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Tuples and arrays. MQOM further manipulates tuples of elements that might be of different
natures. Such a tuple is naturally serialized as:

Serialize((e1, . . . , eℓ)) = Serialize(e1) ∥ . . . ∥ Serialize(eℓ) .

In the same way, an array arr = (arr[0], . . . , arr[ℓ− 1]) is serialized as

Serialize(arr) = Serialize(arr[0]) ∥ . . . ∥ Serialize(arr[ℓ− 1]) .
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2.4 Main algorithms

2.4.1 Key generation

The key generation of MQOM consists in pseudorandomly generating an MQ instance, with
triangular matrices Ai. It randomly draws a master seed seed key from which it derives the
secret MQ solution x and another seed mseed eq from which the MQ equations {Ai}, {bi} are
derived. The MQ output y is then computed from {Ai}, {bi} and x. Finally, the key pair is
defined and returned as pk := (mseed eq, y) and sk := (pk, x). The key generation is depicted
in Algorithm 1. The subroutine ExpandEquations is invoked to expand the MQ equations from
the seed mseed eq. Subseeds seed eq[0], . . . , seed eq[m−1] are first derived from mseed eq,
then (Ai, bi) is expanded from seed eq[i] for every i ∈ [1,m].

Algorithm 1 KeyGen()

Output: a secret key sk, a public key pk

1: seed key← {0, 1}2λ
2: (x, mseed eq)← Parse(XOF0(seed key, len := |x|2 + 2λ)) ▷ x ∈ Fn, mseed eq ∈ {0, 1}2λ
3: ({Ai}, {bi})← ExpandEquations(mseed eq) ▷ Ai ∈ Fn×n, bi ∈ Fn

4: for i = 0 to m− 1 do
5: yi ← x⊺Aix+ b⊺i x ▷ yi ∈ F
6: y ← (y1, . . . , ym) ▷ y ∈ Fm

7: pk← Serialize(mseed eq, y)
8: sk← Serialize(pk, x)
9: return (pk, sk)

Algorithm 2 ExpandEquations(mseed eq)

Input: a seed key mseed eq ∈ {0, 1}2λ
Output: MQ equations ({Ai}, {bi})
1: Let ncj = j · log2 |F|, ∀j ∈ [1,m] ▷ Number of PRG bits in jth row of Ai

2: Let nzj = (n− j) · log2 |F|, ∀j ∈ [1,m] ▷ Number of zero bits in jth row of Ai

3: Let nbj = ⌈ncj/8⌉, ∀j ∈ [1,m] ▷ Number of PRG bytes for the jth row of Ai

4: Let nbeq = nbn−1 +
∑n−1

j=0 nbj ▷ Number of PRG bytes for (Ai, bi)
5: for i = 1 to m do
6: seed eq[i− 1]← XOF1((mseed eq,Bits16(i)), len := λ)
7: (byte[0] ∥ . . . ∥ byte[nbeq − 1])← PRG(0λ, 0, seed eq[i− 1], nbeq)
8: k ← 0
9: for j = 1 to n do

10: row bits = bytes[k] ∥ · · · ∥ bytes[k + nbj − 1]
11: Ai,j ← Parse(Truncatencj (row bits) ∥ 0nzj ) ▷ Ai,j ∈ Fn, jth row of Ai

12: k ← k + nbj

13: Ai ← (Ai,1, . . . , Ai,n) ▷ Ai ∈ Fn×n

14: bi ← Parse(byte[k] ∥ · · · ∥ byte[nbeq − 1]) ▷ bi ∈ Fn

15: return ({Ai}, {bi})
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2.4.2 Signing

The MQOM signing process is depicted in Algorithm 3 while the challenge sampling subroutine
(implementing the grinding tweak) is depicted in Algorithm 4. The subroutines for the BLC
commitment and computation of Pα are depicted in Section 2.5.

Algorithm 3 Sign(sk, msg)

Input: a secret key sk, a message msg
Output: a signature sig
1: (pk, x) = Parse(sk)
2: (mseed eq, y) = Parse(pk)
3: ({Ai}, {bi})← ExpandEquations(mseed eq)
4: mseed← {0, 1}λ
5: salt← {0, 1}λ
6: msg hash← Hash2(msg)
7: (com1, key, x0, u0, u1)← BLC.Commit(mseed, salt, x)
8: (α0, α1)← ComputePAlpha(com1, x0, u0, u1, x, {Ai}, {bi}, {yi})
9: com2 ← Hash3(α0, α1)

10: hash← Hash4(pk, com1, com2, msg hash)
11: (i∗, nonce)← SampleChallenge(hash)
12: opening← BLC.Open(key, i∗)
13: return sig := Serialize(salt, com1, com2, α1, opening, nonce)

Algorithm 4 SampleChallenge(hash)

Input: Fiat-Shamir hash digest hash ∈ {0, 1}2λ
Output: challenge indexes i∗ ∈ [0, N − 1]τ , a grinding counter nonce ∈ [0, 232 − 1]
1: nonce← 0 ▷ nonce ∈ [0, 232 − 1]
2: (i∗, val)← Parse(XOF5((hash, nonce), len := τ · log2(N) + w)) ▷ i∗ ∈ [0, N − 1]τ

3: while val ̸= 0 do ▷ val ∈ [0, 2w − 1]
4: nonce← nonce+ 1
5: (i∗, val)← Parse(XOF5((hash, nonce), len := τ · log2(N) + w))

6: return (i∗, nonce)



20 MQOM: MQ on my Mind

2.4.3 Verification

The MQOM verification process is depicted in Algorithm 5. The subroutines for the BLC
evaluation and recomputation of Pα are depicted in Section 2.5.

Algorithm 5 Verif(pk, msg, sig)

Input: a public key pk, a message msg, a signature sig
Output: True or False
1: (mseed eq, y) = Parse(pk)
2: ({Ai}, {bi})← ExpandEquations(mseed eq)
3: (salt, com1, com2, α1, opening, nonce) = Parse(sig)
4: msg hash← Hash2(msg)
5: hash← Hash4(pk, com1, com2, msg hash)
6: (i∗, val)← Parse(XOF5((hash, nonce), len := τ · log2(N) + w))
7: if val ̸= 0 then return False
8: (ret, x eval, u eval)← BLC.Eval(salt, com1, opening, i

∗)
9: if ret ̸= True then return False

10: α0 ← RecomputePAlpha(com1, α1, x eval, u eval, {Ai}, {bi}, {yi})
11: com′2 ← Hash3(α0, α1)
12: if com′2 ̸= com2 then return False
13: return True
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2.5 Subroutines

2.5.1 Arithmetic routines

The main arithmetic routine of the signing process is ComputePAlpha which computes the
polynomials Pα = Pu + Φ(F (Px)), for all the executions e ∈ [0, τ − 1], where F = (f1, . . . , fm)
with fi(x) = x⊺Aix + b⊺i x − yi. The resulting polynomials are returned as arrays of coefficient
vectors: α0 = (α0[0], . . . , α0[τ − 1]) and α1 = (α1[0], . . . , α1[τ − 1]) such that for a given
execution e, the polynomial Pα is defined as: Pα = α0[e]+ α1[e] ·X. This function relies on
the subroutine ComputePz which computes Pz = F (Px) from Px. The batching (a.k.a. 5-round)
variant is enabled/disabled with the Boolean batching.

Algorithm 6 ComputePAlpha(com, x0, u0, u1, x, {Ai}, {bi})
Input: a BLC commitment com, coefficient arrays x0, u0, u1, MQ secret solution x, MQ equa-

tions {Ai}, {bi}
Output: coefficient arrays α0, α1

1: if batching then ▷ batching = True ⇒ 5-round variant

2: Γ ∈ Kη×m
µ ← Parse(XOF8(com, len := η ·m · log2 |F|))

3: else ▷ batching = False ⇒ 3-round variant
4: Γ← Iη ▷ Identity matrix Iη ∈ Kη×η with η = m/µ

5: for e = 0 to τ − 1 do
6: (z0, z1)← ComputePz(x0[e], x, {Ai}, {bi}) ▷ Pz = z0 + z1 ·X ∈

(
K[X]⩽1

)m
7: α0[e]← u0[e]+ Γ · Φ(z0)
8: α1[e]← u1[e]+ Γ · Φ(z1) ▷ Pα = α0[e]+ α1[e] ·X ∈

(
K[X]⩽1

)η
9: return (α0, α1)

Algorithm 7 ComputePz(x0[e], x, {Ai}, {bi})
Input: coefficient vectors x0[e] ∈ Kn, x ∈ Fn, MQ equations {Ai}, {bi}
Output: coefficients z0, z1 ∈ Km

▷ Compute Pz,i = Px
⊺AiPx + b⊺iPx ·X − yi ·X2 for all i ∈ [1,m]

▷ Skip computation of degree-2 coefficients (known to be 0)

1: for i = 1 to m do
▷ Compute Pt = t0 + t1 ·X := Ai · Px + bi ·X

2: t0 ← Ai · x0[e] ▷ t0 ∈ Kn

3: t1 ← Ai · x+ bi ▷ t1 ∈ Fn

▷ Compute Pz,i = z0,i + z1,i ·X = P ⊺
t Px − yi ·X2

4: z0,i ← t⊺0 · x0[e] ▷ z0,i ∈ K
5: z1,i ← t⊺0 · x+ t⊺1 · x0[e] ▷ z1,i ∈ K
6: z0 ← (z0,1, . . . , z0,m) ▷ z0 ∈ Km

7: z1 ← (z1,1, . . . , z1,m) ▷ z1 ∈ Km

8: return (z0, z1)

Remark 3. In ComputePz, the variable t1 = Ai ·x+bi takes a different value for each i, but for
a fixed i, its value remains constant across all executions e = 0, . . . , τ − 1. This implies that the
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m values of t1 (corresponding to i ∈ [1,m]) can be computed once and reused for all executions.
Furthermore, since these values depend only on the secret key sk, they could be precomputed and
used for every call to the signing algorithm. We do not consider this optimization here to keep
the description simple but it could be easily integrated to enhance the efficiency of a concrete
implementation.

The main arithmetic routine of the verification process is RecomputePAlpha which recomputes
the polynomials Pα from the coefficients α1 and the opened evaluations Px(r), Pu(r) for all the
executions e ∈ [0, τ − 1]. Namely, this function recomputes and returns the missing coefficients
α1. It makes use of the subroutine ComputePzEval which computes the evaluation Pz(r) from
Px(r), Pu(r) for a single execution.

Algorithm 8 RecomputePAlpha(com, α1, i
∗, x eval, u eval, {Ai}, {bi}, {yi})

Input: a BLC commitment com, coefficient array α1, index array i∗, evaluation arrays x eval,
u eval, MQ equations {Ai}, {bi}, {yi}

Output: coefficient array α0

1: if batching then ▷ batching = True ⇒ 5-round variant

2: Γ ∈ Kη×m
µ ← Parse(XOF8(com, len := η ·m · log2 |F|))

3: else ▷ batching = False ⇒ 3-round variant
4: Γ← Iη ▷ Identity matrix Iη ∈ Kη×η with η = m/µ

5: for e = 0 to τ − 1 do
6: Let r = ωi∗[e] ▷ r ∈ K
7: Let vx = x eval[e] ▷ vx = Px(r) ∈ Kn

8: Let vu = u eval[e] ▷ vu = Pu(r) ∈ Kη

9: vz ← ComputePzEval(r, vx, {Ai}, {bi}, {yi}) ▷ vz = Pz(r) ∈ Kη

10: vα ← vu + Γ · Φ(vz) ▷ vα = Pα(r) = α0[e]+ α1[e] · r
11: α0[e]← vα − α1[e] · r ▷ α0[e] ∈ Kη

12: return α0

Algorithm 9 ComputePzEval(r, vx, {Ai}, {bi}, {yi})
Input: evaluation point r ∈ Ω, evaluation vx ∈ K, MQ equations {Ai}, {bi}, {yi}
Output: evaluation vz ∈ K

▷ Compute vz,i = vx
⊺Aivx + b⊺i vx · r − yi · r2 for all i ∈ [1,m]

1: for i = 1 to m do
▷ Compute vt = Pt(r) = Ai · Px(r) + bi · r

2: vt ← Ai · vx + bi · r ▷ vt ∈ Kn

▷ Compute vz,i = Pz,i(r) = v⊺t vx − yi · r2

3: vz,i ← v⊺t · vx − yi · r2 ▷ vz,i ∈ K
4: vz ← (vz,1, . . . , vz,m) ▷ vz ∈ Km

5: return vz
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2.5.2 Batch line commitment routines

The BLC.Commit routine computes the BLC commitment com1, the associated opening key
(the nodes of the GGM trees), and the associated polynomials Px, Pu returned as array of
coefficients.

Algorithm 10 BLC.Commit(mseed, salt, x)

Input: a master seed mseed ∈ {0, 1}λ, a salt salt ∈ {0, 1}λ, an MQ secret solution x
Output: a BLC commitment com1, an opening key key, coefficient arrays x0, u0, u1
1: (rseed[0], . . . , rseed[τ − 1])← Parse(PRG(0λ, 0, mseed, τ · λ))
2: δ ← FirstBitsλ(x) ▷ δ ∈ {0, 1}λ
3: for e = 0 to τ − 1 do
4: (node[e], lseed[e])← GGMTree.Expand(salt, rseed[e], e, δ)
5: tweaked salt← TweakSalt(salt, 0, e, 0)
6: for i = 0 to N − 1 do
7: ls com[e][i]← SeedCommit(tweaked salt, lseed[e][i])
8: exp[e][i]← PRG(salt, e, lseed[e][i], |x|8 + |u|8 − λ/8)
9: (x̄i, ūi)← Parse(lseed[e][i] ∥ exp[e][i]) ▷ x̄i ∈ Fn, ūi ∈ Kη

10: hash ls com[e]← Hash6(ls com[e])

▷ Compute Pu = u0[e]+ u1[e] ·X =
∑N−1

i=0 ūi · (X − ωi)

11: u0[e]← −
∑N−1

i=0 ωi · ūi ▷ u0[e] ∈ Kη

12: u1[e]←
∑N−1

i=0 ūi ▷ u1[e] ∈ Kη

▷ Compute Px = x0[e]+ x ·X = ∆x[e] ·X +
∑N−1

i=0 x̄i · (X − ωi)

13: x0[e]← −
∑N−1

i=0 ωi · x̄i ▷ x0[e] ∈ Kn

14: ∆x[e]← x−
∑N−1

i=0 x̄i ▷ ∆x[e] ∈ Fn

15: ∆
(1)
x [e]← NextBitsλ(∆x[e]) ▷ ∆

(1)
x [e] ∈ {0, 1}|x|2−λ

16: com1 ← Hash7(hash ls com,∆
(1)
x )

17: key← Serialize(node, ls com,∆
(1)
x )

18: return (com1, key, x0, u0, u1)

From an opening key and an index array i∗, the BLC.Open routine returns the opening tuple
made of the sibling paths (path), the hidden leaf commitments (out ls com) and the correction

values (∆
(1)
x ).

Algorithm 11 BLC.Open(key, i∗)

Input: a commitment key key, an index array i∗

Output: a BLC opening opening ∈ {0, 1}λ·τ ·(log2(N)+2)

1: (node, ls com,∆
(1)
x )← Parse(key)

2: for e = 0 to τ − 1 do
3: path[e]← GGMTree.Open(node[e], i∗[e])
4: out ls com[e]← ls com[e][i∗[e]]

5: opening← Serialize(path, out ls com,∆
(1)
x )

6: return opening
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The BLC.Eval routine is called by the verification algorithm to check the opening validity and
derive the underlying evaluations Px(r), Pu(r) for all the executions e ∈ [0, τ − 1].

Algorithm 12 BLC.Eval(salt, com, opening, i∗)

Input: a salt salt, a BLC commitment com, a BLC opening opening, index array i∗

Output: ret ∈ {True,False}, evaluation arrays x eval, u eval

1: (path, out ls com,∆
(1)
x )← Parse(opening)

2: for e = 0 to τ − 1 do

▷ Compute partial GGM trees
3: lseed[e]← GGMTree.PartiallyExpand(salt, path[e], i∗[e])

▷ Compute evaluations
4: tweaked salt← TweakSalt(salt, 0, e, 0)
5: for i = 0 to N − 1 do
6: if i ̸= i∗[e] then
7: ls com[e][i]← SeedCommit(tweaked salt, lseed[e][i])
8: exp[e][i]← PRG(salt, e, lseed[e][i], |x|8 + |u|8 − λ/8)
9: (x̄i, ūi)← Parse(lseed[e][i] ∥ exp[e][i]) ▷ x̄i ∈ Fn, ūi ∈ Kη

10: ls com[e][i∗[e]]← out ls com[e]
11: hash ls com[e]← Hash6(ls com[e])

12: Let r = ωi∗[e] ▷ r ∈ K
13: ∆x[e]← PadLeftλ(∆

(1)
x [e]) ▷ ∆x[e] ∈ Fn

14: vx ← ∆x[e] · r +
∑

i ̸=i∗[e] x̄i · (r − ωi) ▷ vx = Px(r) ∈ Kn

15: vu ←
∑

i ̸=i∗[e] ūi · (r − ωi) ▷ vu = Pu(r) ∈ Kη

16: x eval[e]← vx
17: u eval[e]← vu

▷ Verify opening

18: com′ ← Hash7(hash ls com,∆
(1)
x )

19: if com′ ̸= com then
20: return (False,⊥,⊥)
21: return (True, x eval, u eval)
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2.5.3 GGM tree routines

The GGM tree subroutines are depicted hereafter. The routine GGMTree.Expand (which is
called in BLC.Commit) expands a GGM tree from a root seed with a salt, an execution index e
(for domain separation) and the offset δ (for correlated tree optimization). It returns the derived
list of nodes and leaf seeds. The routine GGMTree.Open (which is called in BLC.Open) extracts
the sibling path from the nodes for a given hidden index. The routine GGMTree.PartiallyExpand
(which is called in BLC.Eval) expands a GGM tree partially from a sibling path with a salt,
an execution index e (for domain separation) and the underlying hidden index. The reader is
referred to Figure 3 for an illustration of the tree structure and numbering of nodes.

Algorithm 13 GGMTree.Expand(salt, rseed[e], e, δ)

Input: a salt salt ∈ {0, 1}λ, a root seed rseed[e] ∈ {0, 1}λ, an execution index e ∈ [0, τ − 1],
an offset δ ∈ {0, 1}λ

Output: a tree node array node[e], a leaf seed array lseed[e]
1: node[e][2]← rseed[e]
2: node[e][3]← rseed[e]⊕ δ
3: for j = 1 to log2(N)− 1 do
4: tweaked salt = TweakSalt(salt, 2, e, j)
5: for k = 2j to 2j+1 − 1 do
6: node[e][2k]← SeedDerive(tweaked salt, node[e][k])
7: node[e][2k + 1]← node[e][2k]⊕ node[e][k]

8: for i = 0 to N − 1 do
9: lseed[e][i]← node[e][N + i]

10: return (node[e], lseed[e])

Algorithm 14 GGMTree.Open(node[e], i∗[e])

Input: a tree node array node[e], a hidden leaf index i∗[e]
Output: sibling path path[e]
1: i← N + i∗[e] ▷ i: index of the hidden node at layer j
2: for j = 0 to log2(N)− 1 do
3: path[e][j]← node[e][i⊕ 1]
4: i← ⌊i/2⌋
5: return path
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Algorithm 15 GGMTree.PartiallyExpand(salt, path[e], e, i∗[e])

Input: a salt salt ∈ {0, 1}λ, a sibling path path[e], an execution index e ∈ [0, τ−1], a hidden
leaf index i∗[e] ∈ [0, N − 1]

Output: a partial leaf seed array lseed[e]

▷ Initialize nodes to ⊥
1: (nodes[e][1], . . . , nodes[e][2N − 1]) = (⊥, . . . ,⊥)
▷ Assign nodes with sibling path

2: i← N + i∗[e] ▷ i: index of the hidden node at layer j
3: for j = 0 to log2(N)− 1 do
4: node[e][i⊕ 1]← path[e][j]
5: i← ⌊i/2⌋

▷ Derive nodes from sibling path
6: for j = 1 to log2(N)− 1 do
7: tweaked salt = TweakSalt(salt, 2, e, j)
8: for k = 2j to 2j+1 − 1 do
9: if node[e][k] ̸= ⊥ then

10: node[e][2k]← SeedDerive(tweaked salt, node[e][k])
11: node[e][2k + 1]← node[e][2k]⊕ node[e][k]

12: for i = 0 to N − 1 do
13: lseed[e][i]← node[e][N + i]

14: return lseed[e]
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2.5.4 Seed processing routines

The following algorithms depict the subroutines of the GGM trees that are used to derive,
commit and expand the seeds.

Algorithm 16 TweakSalt(salt, sel, e, j)

Input: a salt salt ∈ {0, 1}λ, a selector sel ∈ {0, 1, 2}, an execution index e ∈ [0, τ − 1], a tree
layer j ∈ [0, log2(N)− 1]

Output: a tweaked salt tweaked salt ∈ {0, 1}λ
▷ sel = 0 for seed commitment (first part)
▷ sel = 1 for seed commitment (second part)
▷ sel = 2 for seed derivation
▷ sel = 3 for PRG

1: tweak← sel+ 4 · e+ 256 · j
2: tweaked salt← salt⊕ Bitsλ(tweak)
3: return tweaked salt

Algorithm 17 SeedDerive(tweaked salt, seed)

Input: a tweaked salt tweaked salt ∈ {0, 1}λ, a seed seed ∈ {0, 1}λ
Output: a derived seed new seed ∈ {0, 1}λ
1: new seed← Enc(key := tweaked salt, ptx := seed)⊕ ψ(seed)
2: return new seed

Algorithm 18 SeedCommit(tweaked salt, seed)

Input: a tweaked salt tweaked salt ∈ {0, 1}λ, a seed seed ∈ {0, 1}λ
Output: a seed commitment seed com ∈ {0, 1}2λ
1: com1 ← Enc(key := tweaked salt, ptx := seed)⊕ ψ(seed)
2: com2 ← Enc(key := tweaked salt⊕ Bitsλ(1), ptx := seed)⊕ ψ(seed)
3: seed com← com1 ∥ com2
4: return seed com

Algorithm 19 PRG(salt, e, seed, nbytes)

Input: a seed seed ∈ {0, 1}λ, an execution index e ∈ [0, τ − 1], a salt salt ∈ {0, 1}λ, a number
of bytes nbytes ∈ N

Output: a pseudorandom byte string out ∈ {0, 1}8·nbytes

1: nblocks ← ⌈8 · nbytes/λ⌉
2: for i = 0 to nblocks − 1 do
3: tweaked salt← TweakSalt(salt, 3, e, i)
4: block[i]← Enc(key := tweaked salt, ptx := seed)⊕ ψ(seed)
5: (byte[0] ∥ . . . ∥ byte[nblocks · λ/8− 1])← Parse(block[0] ∥ . . . ∥ block[nblocks − 1])
6: out← byte[0] ∥ . . . ∥ byte[nbytes − 1]
7: return out
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2.5.5 Symmetric primitives

MQOM relies on two symmetric primitives:

1. A block cipher:

Enc : (key, ptx) ∈ {0, 1}λ × {0, 1}λ 7→ ctx ∈ {0, 1}λ ;

2. An extendable-output hash function:

XOF : (in, len) ∈ {0, 1}∗ × N 7→ out ∈ {0, 1}len .

We further define a (fixed-length output) hash function as:

Hash : in ∈ {0, 1}∗ 7→ XOF(in, 2λ) ∈ {0, 1}2λ .
Table 4 summarizes the instantiations of these two primitives for the NIST Categories I, III

and V (corresponding to a parameter λ = 128, λ = 192, λ = 256 respectively). For Category
III (λ = 192), Enc is defined as a truncated version of Rijndael-256-256 (hence the asterisk),
which is formally defined as:

Enc(192) : (key, ptx) ∈ {0, 1}192 × {0, 1}192 7→ Truncate192(Enc
(256)(key ∥ 064, ptx ∥ 064)) .

Table 4: Symmetric primitives in MQOM.

Category I Category III Category V

(λ = 128) (λ = 192) (λ = 256)

Enc AES-128 Rijndael-256-256∗ Rijndael-256-256

XOF SHAKE-128 SHAKE-256 SHAKE-256

Domain separation. We enforce domain separation for different calls to the XOF (or Hash)
functions by prepending a byte representing the call index i to the data being hashed. Specifi-
cally, for i ∈ N, with i < 256, we define:

XOFi(in, len) := XOF(Bits8(i) ∥ in, len) ,
and consequently Hashi(in) = Hash(Bits8(i) ∥ in).
Here is a summary of the invocations to the (extendable output) hash function with associated

purposes:

• XOF0: expansion of seed key (secret key),

• XOF1: expansion of seed eq (MQ equations),

• Hash2: message hash,

• Hash3: hash commitment of α0, α1,

• Hash4: Fiat-Shamir hash,

• XOF5: challenge sampling (with grinding),

• Hash6: hash commitment of leaf seed commitments,

• Hash7: BLC commitment,

• XOF8: generation of Γ (batching variant).
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2.5.6 Bit manipulation

We define hereafter the bit manipulation functions. The function

Bitsℓ : [0, 2
ℓ − 1]→ {0, 1}ℓ

takes as input an integer and returns its binary representation. The functions FirstBitsλ and
NextBitsλ provide the λ first bits and |x|2−λ next bits of a |x|2-bit string. Formally, we define:

FirstBitsλ : ∆x ∈ Fn 7→ ∆(0)
x ∈ {0, 1}λ

and
NextBitsλ : ∆x ∈ Fn 7→ ∆(1)

x ∈ {0, 1}|x|2−λ .

where
(∆(0)

x ∥ ∆(1)
x ) = Serialize(∆x) ∈ {0, 1}|x|2 .

We further define the function PadLeftλ as

PadLeftλ : ∆(1)
x ∈ {0, 1}|x|2−λ 7→ Parse(0λ ∥ ∆(1)

x ) ∈ Fn .

Finally, the function
Truncateℓ : {0, 1}∗ → {0, 1}ℓ

returns the ℓ first bits of its input bit string.
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3 MQOM instances

In this section, we propose several parameter sets for theMQOM signature scheme. As explained
hereafter, those parameters have been selected to meet the categories I, III and V defined by
the NIST while targeting good performances (in terms of signature size and running times).

3.1 Parameter selection

MQ parameters. Instead of considering prime field as in the first version, MQOMv2 relies
on the binary fields. The main motivation for this update is to avoid rejection sampling and
arithmetic-Boolean conversions. As first option, we chose |F| = 2 for the base field, which
leads to the shortest signatures. As second option, we chose |F| = 256 which enjoys easier
implementation (with a field element matching a byte). For those two fields, we took the
number of equations m to be equal the number of unknowns n and selected the minimal m = n
to achieve a target security level (for categories I, III and V) according to the state of the art
of MQ cryptanalysis (see Section 4.2).
Looking ahead, the extension field K is either defined as F256 or F216 (see explanations below).

In order to ensure that m is always divisible by µ = [K : F] (which simplify the field-embedding
batching – see Section 2.1.2), we restricted the selection to values of m that are multiples of 16
for F = F2 and multiples of 2 for F = F256.

Proof system parameters. The MQOM proof system relies on the parameters summarized in
Table 2: the size N of the evaluation set Ω := {ω0, . . . , ωN−1}, the extension field K of degree
µ, the number η of internal repetitions, the number τ of external repetitions and the grinding
proof-of-work parameter w.
We chose N as a power of two to manipulate complete binary GGM trees. A larger N leads

to a shorter signature at the cost of slower signing and verification algorithms. We chose to
consider two values for N , namely N = 2048 (short variant) and N = 256 (fast variant), to
obtain two different trade-offs between communication and computation. Then, the extension
field K is chosen such that |K| ≥ N . To ease the implementation, we chose to consider a common
K for the two base fields (F2 and F256) and thus define K as their common extension such that
|K| ≤ N . This way, we get K = F216 for N = 2048 and K = F256 for N = 256.

Given the pair (N,K), we selected the remaining parameters to achieve λ bits of soundness,
with λ equal to 128, 192 and 256 for Categories I, III and V, respectively. On the one hand,
we took η = λ/ log2 |K| for the batching (5-round) variant to ensure a soundness error of
1/|K|η = 2−λ (while η is fixed to as m/µ by design for the 3-round variant). On the other hand,
we chose the parameters τ and w such that

(
2
N

)τ · 2−w ≤ 2−λ (see Section 2.1.4).

Field extension. As explained previously, the MQOM signature scheme relies on three different
fields for F and K: F2, F28 and F216 . Table 5 summarizes the field extensions that we use in our
instances.

Table 5: Definition of field extensions.

Field (F or K) Field extension

F28 F2[ξ]/⟨ξ8 + ξ4 + ξ3 + ξ + 1⟩
F216 F28 [ν]/⟨v2 + v + ξ5⟩
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Evaluation domain. The PIOP evaluation query is sampled from the evaluation domain Ω :=
{ω0, . . . , ωN−1} of size N . In our instances, we use

ωi := ν ·
7∑

j=0

(b8+j · ξj) +
7∑

j=0

(bj · ξj) ∈ K

for all i ∈ {0, N − 1}, where (b0, . . . , b15) is the binary decomposition of i :=
∑15

j=0 bj · 2j .

3.2 Key and signature sizes

Public key. The public key consists of a 2λ-bit seed mseed eq for the generation of the MQ
equations, and a serialized vector y ∈ Fm corresponding to the outputs of the equations. For
|F| = 2, we store 8 field elements on one byte. For |F| = 256, we store one field element on one
byte. Thus, the size of the public key is given by:

|pk| =

{
2λ
8 + m

8 bytes for F2

2λ
8 +m bytes for F256.

(We recall that m is a multiple of 16 for F = F2 so that m
8 is an integer.)

Secret key. The secret key consists of the same elements as the public key, plus a serialized
vector x ∈ Fn

q corresponding to the secret solution of the MQ system. Thus, the size of the
secret key is given by:

|sk| =

{
2λ
8 + m

8 + n
8 bytes for F2

2λ
8 +m+ n bytes for F256

As all the existing public-key schemes, let us remark that we have an alternative defini-
tion of the key generation in which the secret key would be seed key, the seed from which
(mseed eq, y, x) are derived. In that case, the size of the secret key would be of 2λ/8 bytes,
but the signer would need to recompute mseed eq, y and x at each signature, increasing the
running time of the signing process. Moreover, the signing algorithm would be more sensitive to
side-channel attacks. We hence recommend to use this alternative only if the size of the secret
key is critical.

Signature size. The size (in bits) of a signature is given by:

|σ| = 32 size of nonce.

+ λ size of the salt

+ 4λ size of com1 and com2

+ τ · (η · µ · log2 |F|) size of α1

+ τ · (n · log2 |F| − λ) size of ∆x′[e] in opening

+ τ · λ · log2N size of path in opening

+ τ · 2λ size of out ls com in opening

Given our encoding on field elements, log2 |F| should be replaced by 1 for F2 and by 8 for
F256. We obtain the following sizes in bytes:

|σ| = 4 +
τ ·

(
n+ η · µ

)
8

+
5λ+ τ · λ · (log2N + 1)

8
for F2,
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and

|σ| = 4 + τ ·
(
n+ η · µ

)
+

5λ+ τ · λ · (log2N + 1)

8
for F256.

The only difference in terms of signature size between the 3-round and the 5-round variants,
comes from the parameter η, which is a bit larger in the 3-round variant (η = m/µ).

3.3 Proposed instances

All the signature parameters are summarized in Table 6, while the corresponding key and
signature sizes are given in Table 7.

Table 6: The MQ and proof system parameters of MQOM for NIST Security Categories I, III,
and V.

Parameter
Sets

NIST
Security

MQ Parameters Proof System Parameters

|F| m = n τ N µ η w

MQOM2-L1-gf2-short-3r/5r Cat. I 2 160 12 2048 16 10/8 8

MQOM2-L1-gf2-fast-3r/5r Cat. I 2 160 17 256 8 20/16 9

MQOM2-L1-gf256-short-3r/5r Cat. I 256 48 12 2048 2 24/8 8

MQOM2-L1-gf256-fast-3r/5r Cat. I 256 48 17 256 1 48/16 9

MQOM2-L3-gf2-short-3r/5r Cat. III 2 240 18 2048 16 15/12 12

MQOM2-L3-gf2-fast-3r/5r Cat. III 2 240 27 256 8 30/24 3

MQOM2-L3-gf256-short-3r/5r Cat. III 256 72 18 2048 2 36/12 12

MQOM2-L3-gf256-fast-3r/5r Cat. III 256 72 27 256 1 72/24 3

MQOM2-L5-gf2-short-3r/5r Cat. V 2 320 25 2048 16 20/16 6

MQOM2-L5-gf2-fast-3r/5r Cat. V 2 320 36 256 8 40/32 4

MQOM2-L5-gf256-short-3r/5r Cat. V 256 96 25 2048 2 48/16 6

MQOM2-L5-gf256-fast-3r/5r Cat. V 256 96 36 256 1 96/32 4
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Table 7: The key and signature sizes in bytes.

Parameter
Set

Sizes (in bytes)

pk sk Sig.

MQOM2-L1-gf2-short-3r/5r 52 72 2 868 / 2 820

MQOM2-L1-gf256-short-3r/5r 80 128 3 540 / 3 156

MQOM2-L1-gf2-fast-3r/5r 52 72 3 212 / 3 144

MQOM2-L1-gf256-fast-3r/5r 80 128 4 164 / 3 620

MQOM2-L3-gf2-short-3r/5r 78 108 6 388 / 6 280

MQOM2-L3-gf256-short-3r/5r 120 192 7 900 / 7 036

MQOM2-L3-gf2-fast-3r/5r 78 108 7 576 / 7 414

MQOM2-L3-gf256-fast-3r/5r 120 192 9 844 / 8 548

MQOM2-L5-gf2-short-3r/5r 104 144 11 764 / 11 564

MQOM2-L5-gf256-short-3r/5r 160 256 14 564 / 12 964

MQOM2-L5-gf2-fast-3r/5r 104 144 13 412 / 13 124

MQOM2-L5-gf256-fast-3r/5r 160 256 17 444 / 15 140
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3.4 Benchmarks

Benchmarks for

• an AVX2-optimized implementation on an AVX2 machine are given in Table 8.

• an GFNI-optimized implementation on an AVX-512+GFNI machine are given in Table 9.
GFNI brings native F256 multiplication acceleration in the Rijndael field.

Table 8: Benchmark of AVX2-optimized implementation of the MQOM on an AVX2 ma-
chine. Timings were run on an AMD Ryzen 7 PRO 6850U.

Instance
KeyGen Sign Verify

ms cycles ms cycles ms cycles

MQOM2-L1-gf2-short-3r 0.64 1.74M 9.84 26.52M 9.32 25.11M

MQOM2-L1-gf2-short-5r 0.78 2.09M 11.82 31.84M 11.16 30.08M

MQOM2-L1-gf2-fast-3r 0.70 1.90M 5.24 14.12M 4.34 11.69M

MQOM2-L1-gf2-fast-5r 0.72 1.93M 5.39 14.53M 4.43 11.93M

MQOM2-L1-gf256-short-3r 0.16 0.44M 8.14 21.93M 7.65 20.60M

MQOM2-L1-gf256-short-5r 0.16 0.44M 6.55 17.65M 6.11 16.45M

MQOM2-L1-gf256-fast-3r 0.16 0.43M 2.60 7.01M 1.88 5.07M

MQOM2-L1-gf256-fast-5r 0.16 0.42M 2.28 6.15M 1.59 4.28M

MQOM2-L3-gf2-short-3r 3.05 8.23M 42.64 114.90M 38.44 103.60M

MQOM2-L3-gf2-short-5r 2.91 7.84M 40.12 108.12M 36.87 99.36M

MQOM2-L3-gf2-fast-3r 2.91 7.85M 21.29 57.37M 19.00 51.19M

MQOM2-L3-gf2-fast-5r 2.90 7.81M 21.10 56.85M 18.70 50.39M

MQOM2-L3-gf256-short-3r 0.72 1.95M 31.12 83.85M 27.61 74.41M

MQOM2-L3-gf256-short-5r 0.71 1.91M 24.76 66.71M 21.33 57.49M

MQOM2-L3-gf256-fast-3r 0.82 2.22M 12.68 34.18M 8.95 24.11M

MQOM2-L3-gf256-fast-5r 0.72 1.93M 10.19 27.47M 6.94 18.71M

MQOM2-L5-gf2-short-3r 5.12 13.81M 103.50 278.92M 98.90 266.51M

MQOM2-L5-gf2-short-5r 5.60 15.09M 113.90 306.94M 107.27 289.07M

MQOM2-L5-gf2-fast-3r 5.09 13.71M 54.00 145.51M 48.23 129.97M

MQOM2-L5-gf2-fast-5r 5.32 14.33M 55.90 150.65M 50.46 135.98M

MQOM2-L5-gf256-short-3r 1.24 3.35M 50.10 135.01M 45.12 121.59M

MQOM2-L5-gf256-short-5r 1.37 3.69M 46.38 124.98M 40.72 109.73M

MQOM2-L5-gf256-fast-3r 1.18 3.18M 20.29 54.69M 13.44 36.22M

MQOM2-L5-gf256-fast-5r 1.21 3.27M 19.53 52.64M 12.50 33.69M
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Table 9: Benchmark of optimized implementation of the MQOM on an AVX-512+GFNI
machine. Timings were run on an AMD Ryzen Threadripper PRO 7995WX.

Instance
KeyGen Sign Verify

ms cycles ms cycles ms cycles

MQOM2-L1-gf2-short-3r 0.62 1.55M 6.01 15.00M 5.54 13.82M

MQOM2-L1-gf2-short-5r 0.63 1.57M 6.30 15.71M 5.61 13.99M

MQOM2-L1-gf2-fast-3r 0.62 1.55M 3.26 8.15M 2.58 6.45M

MQOM2-L1-gf2-fast-5r 0.62 1.55M 3.29 8.22M 2.59 6.47M

MQOM2-L1-gf256-short-3r 0.12 0.31M 5.74 14.34M 5.63 14.06M

MQOM2-L1-gf256-short-5r 0.12 0.31M 4.37 10.92M 4.25 10.61M

MQOM2-L1-gf256-fast-3r 0.11 0.28M 1.24 3.08M 1.05 2.61M

MQOM2-L1-gf256-fast-5r 0.12 0.30M 1.09 2.71M 0.89 2.23M

MQOM2-L3-gf2-short-3r 2.30 5.74M 21.05 52.54M 19.08 47.62M

MQOM2-L3-gf2-short-5r 2.50 6.25M 21.75 54.30M 19.34 48.27M

MQOM2-L3-gf2-fast-3r 2.27 5.67M 11.27 28.12M 9.39 23.44M

MQOM2-L3-gf2-fast-5r 2.29 5.71M 11.37 28.38M 10.04 25.05M

MQOM2-L3-gf256-short-3r 0.46 1.14M 17.15 42.81M 15.99 39.93M

MQOM2-L3-gf256-short-5r 0.46 1.15M 13.80 34.44M 12.74 31.80M

MQOM2-L3-gf256-fast-3r 0.52 1.29M 4.33 10.80M 4.03 10.05M

MQOM2-L3-gf256-fast-5r 0.46 1.16M 3.25 8.10M 2.97 7.42M

MQOM2-L5-gf2-short-3r 3.62 9.04M 37.43 93.44M 34.72 86.68M

MQOM2-L5-gf2-short-5r 3.65 9.11M 38.48 96.04M 32.15 80.26M

MQOM2-L5-gf2-fast-3r 3.53 8.82M 23.89 59.64M 19.37 48.34M

MQOM2-L5-gf2-fast-5r 3.53 8.82M 23.60 58.91M 19.32 48.23M

MQOM2-L5-gf256-short-3r 0.81 2.03M 24.36 60.80M 23.72 59.21M

MQOM2-L5-gf256-short-5r 0.73 1.82M 17.27 43.12M 16.85 42.06M

MQOM2-L5-gf256-fast-3r 0.81 2.02M 6.15 15.36M 5.46 13.62M

MQOM2-L5-gf256-fast-5r 0.82 2.04M 5.27 13.15M 4.58 11.44M
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4 Security

4.1 Unforgeability

The MQOM signature scheme aims at providing unforgeability against chosen message attacks
(EUF-CMA). In this setting, the adversary is given a public key pk and they can ask an oracle
(called the signature oracle) to sign messages (msg1, . . . , msgr) that they can select at will. The
goal of the adversary is to generate a pair (msg, σ) such that msg is not one of requests to the
signature oracle and such that σ is a valid signature of msg with respect to pk.

Our security statement is based on the following assumptions:

• MQ hardness. Solving the considered MQ instance is (ϵmq, t)-hard for some (ϵmq, t)
which are implicit functions of the security parameter λ. Formally, any adversary A on
input a random MQ instance

(
{Ai}, {bi}, y

)
and running in time at most t has probability

at most ϵmq to output the solution x of the input instance.

• Random Oracle Modem (ROM). Our security statement holds in the ROM where
the (extendable-output) hash function XOF is modelled as a random oracle.

• Ideal Cipher Model (ICM). Our security statement holds in the ICM where the block
cipher Enc is modelled as an ideal cipher.

Based on the ROM and the ICM, the EUF-CMA security of MQOM holds from the soundness
and zero-knowledge properties of the underlying ZK-PoK (which are overviewed in Section 2.1).
The formal EUF-CMA security proof of MQOM will be added to a future version of the speci-
fication. It will heavily rely on usual techniques for MPC-in-the-Head signature schemes with
GGM trees such as, e.g., the security proof of MQOM v1 [FR23a; BFR24] with specificities
related to correlated GGM trees as in [KLS24].

4.2 Attacks against MQ instances

The security of the MQOM signature scheme relies on the hardness to solve an instance of the
multivariate quadratic problem, since the secret key is a solution of the MQ instance represented
by the public key. There exists many algorithms to solve the MQ problem. Their complexity
depends on several parameters: the number n of unknowns, the number m of quadratic equa-
tions, the size q of the field, the characteristic of the field, and the number of solutions. The
optimal algorithm might vary depending on the values of these parameters.

The best algorithms to solve polynomial systems are quite different over F2 and over larger
finite fields. While the global asymptotic complexity of most algorithms is well-understood,
estimating the concrete number of operations that is required to invert a given quadratic function
is more an art than a science.
Several software tools provide estimates of the number of operations required to execute

polynomial system solving algorithms, notably the MQEstimator [BMS+22] that is available in
the CryptographicEstimators software library [EVZ+24].
The estimates provided by such tools should always be taken with a grain of salt. When

estimating the number of bit operations required to run the F5 algorithm, we observed a no-
ticeable difference between the values given by version 1.1.1 (released on September 5th, 2023)
and version 1.2.0 (released on November 24th, 2023) of the MQEstimator library. This in turn
modifies the cost estimates for the hybrid-F5 algorithm. The results are shown in Table 10.
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n m q
v1.1.1 v1.2.0

F5 hybrid-F5 (k) F5 hybrid-F5 (k)

36 36 256 150.3 111.5 (2) 203.8 143.2 (4)

Table 10: Cost estimates for solving quadratic systems with different versions of the
CryptographicEstimators library. v1.1.1 was released on September 5th, 2023 (git
commit 17924f39) and v1.2.0 was released on November 24th, 2023 (git commit
35bc27a1). The “F5” (resp. hybrid-F5) columns shows the log in base 2 of the num-
ber of “bit operations” required by the corresponding algorithm. For hybrid-F5, the
optimal number of “guessed” variables is given in parentheses.

The two versions also differ in the number of variables to “guess” in the hybrid-F5 algorithm.
These numbers can be obtained by the following bit of code (adjust with the required sizes):

q = 256

n = 36

m = 36

from cryptographic_estimators import MQEstimator

MQEstimator.MQEstimator(n, m, q).f5.time_complexity()

e = MQEstimator.MQEstimator(n, m, q).hybrid_f5

e.time_complexity(), e.k()

We traced down the difference between the two versions to a change in the default value of the
linear algebra constant, namely the value of ω such that matrix multiplications requires O (nω)
arithmetic operations. The best algorithms to solve polynomial systems heavily rely on either
sparse or dense linear algebra with exponentially large matrices. The best known value of the
linear algebra constant is ω = 2.3728596 [AW21] but it is well-known that the corresponding
algorithms are so impractical that they have never been implemented (they are “galactic”).
The CryptographicEstimators library switched from using w = 2 by default in version 1.1.1

to using w = 2.81 in version 1.2.0, which corresponds to the use of the Strassen algorithm.
This modification alone may explain the observed differences in cost estimates between the two
versions. We agree that the use of the Strassen algorith for dense linear algebra is practical: it
is implemented in M4RI and M4RIE [AB24] for binary matrices and in FFLAS/FFPACK [DGP08]
for matrices over larger finite fields.
In any case, we discuss below a number of shortcomings of the CryptographicEstimators library,

and discuss our own estimates.

4.2.1 Tools and building blocks

Arithmetic over F256. We consider that addition over F256 costs 8 bit operations (to XOR the
two operands). Bernstein proposed in 2000 an algorithm to multiply two degree-7 polynomials
over F2[X] in 100 bit operations. Once their degree-14 product has been computed, it must be
reduced modulo the irreducible polynomial that defines the finite field. Take F = X8 +X4 +
X3 +X + 1 (as given in Table 5). The remainder of a degree-14 polynomial modulo F can be
computed with 28 bit operations. Therefore we consider that multiplication requires 128 bit
operations.

Monomials. It is well-known that there are
(
n+d−1

d

)
monomials of degree exactly d in n vari-

ables, and that there are
(
n+d
d

)
monomials of degree at most d.



38 MQOM: MQ on my Mind

The situation is slightly different in the binary case, where considering the effect of the so-
called “field equations” x2i = xi is beneficial. In this case, we mostly work in the Boolean
algebra

R = F2[x1, . . . , xn] /
〈
x21 − x1, . . . , x2n − xn

〉
.

In the Boolean algebra, there are
(
n
d

)
monomials of degree exactly d and there are

∑d
i=0

(
n
i

)
monomials of degree at most d. This last sum has no closed expression.

Macaulay matrices. Consider a sequence of quadratic polynomials f1, . . . , fm in Fq[x1, . . . , xn].
Denote by I the ideal they span. I can be seen as an infinite-dimensional vector space spanned
by the mfj , where m ranges across all possible monomials. Let Id (resp. I≤d) denote the
subspace formed by the mfj where m ranges across all monomials of degree d (resp. at most
d). In general, Id is not equal to the set of all degree-d polynomials of I, because of potential
degree falls: some low-degree polynomials in I can only be obtained by taking a high-degree
polynomial combination of the fj . Both sets are equal only when the fj are a Gröbner basis of
I, a fact that was noted long ago by Lazard [Laz83].
Polynomials of I with a special shape can often be found effectively by means of linear algebra,

by searching inside I≤d for a sufficiently large d. The degree-d Macaulay matrix of f1, . . . , fm is
the matrix whose rows are the mifj with degmi ≤ d− 2 and whose columns correspond to all
possible monomials of degree at most d. It follows that the row span of the degree-d Macaulay
matrix is exactly I≤d.

The degree-d Macaulay matrix of f1, . . . , fm has
(
n+d
d

)
columns and m

(
n+d−2
d−2

)
rows. In the

Boolean case, it has
∑d

i=0

(
n
i

)
columns and m

∑d−2
i=0

(
n
i

)
rows.

Macaulay matrices are quite sparse, because each row has at most (n+ 1)(n+ 2)/2 non-zero
coefficients. It is well-known that they are also rank-deficient: there are linear dependencies
between rows, at least because of the trivial relations fifj = fjfi and also because of f2i = f
in the binary case. However, under the assumption that the fj form a (semi-)regular sequence,
the rank of the degree-d Macaulay matrix can be determined precisely and it only depends
on n and m; it does not depend from the actual coefficients of the fj ’s. This assumption
essentially means that the polynomials are not bound by “unexpected” algebraic relations. It
is usually well-verified in practice on unstructured systems, and is therefore standard in all the
cryptographic literature. The interested reader is referred to [Bar04; BFS15] for more details.
We now assume that the the fj ’s are semi-regular.
The leading-degree block of the degree-d Macaulay matrix is the submatrix restricted to the

mifj where degmi = d− 2 (so that mi · fj has degree exactly d) and restricted to the columns
describing degree-d monomials. In other terms, it contains the degree-d terms of degree-d
polynomials.
Consider the series expansion:∑

j

ajz
j = (1− z2)m(1− z)−n.

The smallest index j such that aj ≤ 0 is the degree of regularity of the semi-regular sequence.
When d is strictly less than the degree of regularity, then the rank of the leading-degree block of
the degree-d Macaulay matrix is

(
n+d−1

d

)
− ad (in the non-binary case). If d is equal or greater

than the degree of regularity, then the rank is just
(
n+d−1

d

)
(the number of columns). Instead of

explicitly working with the series, which requires tools from computer algebra, we use a simple
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recurrence relations between the ranks of Macaulay matrices. Define

R0,j(n,m) = 0

R1,j(n,m) = 0

Rd,0(n,m) = 0

Rd,j+1(n,m) = Rd,j(n,m) + max

(
0,

(
n

d− 2

)
−Rd−2,j(n,m)

)
Rd(n,m) = Rd,m(n,m)

It is shown in [Bar04, lemma 3.3.2] that Rd(n,m) is the rank of the leading-degree block of the
degree-d Macaulay matrix, under the assumption that the fj are (semi-)regular and that d is
less than their degree of regularity. The smallest d such that Rd(n,m) is greater than or equal
to

(
n+d−1

d

)
, which is the number of degree-d monomials in n variables, is the degree of regularity

of the fj . Because the leading-degree blocks are clearly linearly independent from each other,

the rank of the degree-d Macaulay matrix is
∑d

i=0Ri(n,m).
Over the binary field, and taking into account the field equations, the same reasoning can be

applied, but the series is different:∑
j

ajz
j = (1 + z)n(1 + z2)−m

and the recurrence relation is also different:

Rd,j+1(n,m) = Rd,j(n,m) + max

(
0,

(
n

d− 2

)
−Rd−2,j+1(n,m)

)
Solving sparse linear systems with the block Wiedemann algorithm. In order to solve Ax = b
with a sparse matrix A, the Block Wiedemann algorithm is usually the solution of choice. We
refer the reader to [CCN+12; BGG+20] for details about the algorithm and practical results.
It has two main parameters, the “blocking factors”, that we denote by m̃ and ñ. Let N denote
the size of the matrix and |A| denote the number of non-zero entries in A.

The bulk of the workload consists in “matrix-vector products”, that are in fact (sparse N×N
matrix) × (dense vector) products. It follows that each matrix-vector product requires 2|A| field
operations (half additions and half multiplications). The block Wiedemann algorithm has three
phases:

BW1 Split in ñ independent jobs. Each job does (1/ñ + 1/m̃)N iterations in sequence. Each
iteration does a “sparse matrix-dense vector” as described above, followed by a (dense
m̃×N matrix) × vector product that requires 2Nm̃ operations (half additions, half mul-
tiplications). In total, there are (1+ ñ/m̃)N iterations aggregated over the ñ independent
jobs. After each iteration, a dense vector of size m̃ must be stored persistently. The
total output size of the ñ independent jobs is therefore (m̃ + ñ)N field elements. This
phase requires (1/ñ+ 1/m̃)N sequential steps, even if the matrix-vector product itself is
perfectly parallel. The total number of arithmetic operations is 2(1+ ñ/m̃)N(|A|+ m̃N).

BW2 Its input consists in (m̃+ ñ)N field elements, it has quasi-linear running time complexity,
and parallelizes well. Its memory usage may not be negligible though.

BW3 Can be split in a very high number of independent jobs. Does N/ñ “sparse matrix-dense
vector” products in total.
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Choosing the optimal values of ñ and m̃ is somewhat of an art. It is usual to choose m̃/ñ = 2
or m̃/ñ = 3. This yields a total workload of (1.5 + 1/n)N or (1.333 + 1/ñ)N iterations,
respectively. Increasing ñ reduces the total time spent in BW3, and if m̃/ñ is fixed, it does
not increase the running time of BW1. However, increasing ñ will increase the running time
and the memory footprint of BW2. Note that increasing ñ has another practical advantage, by
increasing the level of coarse-grained parallelism in BW1.

Solving dense linear systems with the Strassen algorithm. Naive cubic multiplication of an
m×k matrix by a k×n matrix requires mnk additions and as many multiplications in the base
field. The Strassen-Winograd algorithm multiples two 2×2 matrices using 7 multiplications and
15 additions. This leads to a O

(
N2.807

)
algorithm to multiply N×N matrices. But what is the

constant hidden in the big Oh? To obtain realistic values, we implemented a naive estimator.

Matrix multiplication. Strassen requires more arithmetic operations than the cubic algo-
rithm when N is very small (typically less than 16). Therefore, we assume that matrix multi-
plication uses the cubic algorithm as soon as one of the matrix dimension is strictly less than
17.

When the matrix dimensions are not even, we ignore the last row/column and process it
afterwards naively (with a matrix-vector product or a rank-1 update), i.e. we do not use
padding. This strategy is implemented in M4RI and FFLAS/FFPACK.
We find that the number of additions is well-approximated by 2.141N log2 7 and the number

of multiplications by 1.5N log2 7. We conclude that the constants hidden in the Big Oh are small
and that it is not completely unreasonable to assume that they are equal to one. However, there
is a noticeable thresholding effect.

Triangular matrix equations UX = A. We consider the problem of solving the matrix
equation UX = A, when U is n×n and upper-triangular, while A is n×m (this can be seen as
m independent triangular systems). The naive algorithm requires 2mn2 arithmetic operations
(half multiplication, half additions).
The problem can be reduced to matrix multiplication. If n is odd, deal with the first coor-

dinate naively (this requires 2mn operations). Then the process comes down to the solution of
two triangular matrix equations of the same shape with size n/2 and a (n×n)× (n×m) matrix
multiplication. Recursion stops when n goes below a given threshold.
We find mnlog2 7−1 multiplications and 1.33mnlog2 7−1 additions.

LU factorization. Solving dense linear systems over finite fields (or computing a kernel basis)
is dominated by LU factorization. There is a naive cubic algorithm, and a a block-recursive
variant that reduces it to matrix multiplication and triangular system solving. This algorithm
has the same asymptotic complexity as Strassen matrix multiplication.
We find that it requires nlog2 7 additions and 3

4n
log2 7 multiplications. Again, there is a no-

ticeable thresholding effect, as shown in Fig. 5.

4.2.2 Solving polynomial systems over “large” finite fields

We discuss in particular the case of F256.
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Figure 5: Cost of Solving Dense Linear Systems (computation of an LU factorization).

The XL algorithm. The XL algorithm was proposed by Courtois, Klimov, Patarin and Shamir
[CKP+00] in 2000. In fact, it turned out to be a reinvention of a technique due to Lazard in
1983 [Laz83], and is more-or-less equivalent to modern Gröbner basis algorithms. What we say
below about algorithmic and practical aspects is mostly based on the existing implementation
of [CCN+12], that has been demonstrated to work and currently holds several computational
records. It is capable of running a parallel computation using a cluster of machines. It was
notably used in Beullens’s practical cryptanalysis of Rainbow [Beu22]. This particular imple-
mentation works only over F16 and F31.

The underlying idea of the XL algorithm is simple. Pick a degree d such that the degree-d
Macaulay matrix has full rank. Cut the column corresponding to the constant monomial. Call
the resulting vector b and the truncated matrix A. Solve the linear system Ax + b = 0. If the
original polynomial system had a single solution x̂, then this linear system also has a single
solution where the coordinates of x describe the values of all possible monomials of degree at
most d, evaluated over x̂. Note that this linear system is sparse, and can be solved using the
block Wiedemann algorithm. Also, because we are only interested in the value of degree-1
monomials, it is sufficient to recover only a very small fraction of the solution vector. This
allows the implementation of [CCN+12] to use an unpublished trick that bypasses the BW3
step almost completely.
The matrix A has

(
n+d
d

)
−1 columns andm

(
n+d−2
d−2

)
rows (it has much more rows than columns,

and the rows have linear dependencies). The aforementioned implementation uses the following
heuristic: a random subset of the rows is extracted to obtain a nearly square matrix, which is
full-rank with high probability. Solving the input polynomial system is thus reduced to solving
a sparse linear system of dimension N :=

(
n+d
d

)
with

(
n+2
2

)
non-zero coefficients per row, using

the block Wiedemann algorithm. Denoting by ñ and m̃ the two blocking factors of the block
Wiedemann algorithm, it follows from the discussion above that the total number of arithmetic
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operations in the BW1 step is approximately:

2

(
1 +

ñ

m̃

)(
n+ d

d

)
︸ ︷︷ ︸

N

2((n+ 2

2

)
+ m̃

)

To estimate the total number of operations, we ignore the costs of the BW2 and BW3 steps
(the latter is almost zero), and assume that exactly N matrix-vector products take place. In
other terms, we assume that ñ/m̃ ≈ 0 and that m̃ ≪ n2. This gives a lower-bound on the
number of operations.

Gröbner bases and the F5 algorithm. Some of the best methods to solve systems of polynomial
equations use Gröbner bases. A Gröbner basis of some polynomial ideal I is a set of generators
of I that enjoy additional desirable properties. It is beyond the scope of this paper to discuss
Gröbner bases; we refer the interested reader to a standard textbook such as [CLO91].
We will just point out that if the polynomial system f1 = · · · = fm = 0 has a single solution

x̂ in the algebraic closure of the field, then this solution can easily be obtained by computing
any Gröbner basis of the ideal spanned by the fi’s isx1 − x̂1, . . . , xn − x̂n.
The classic method to compute such bases is known as Buchberger’s algorithm [Buc65]. The

state of the art, at this point, seems to be the F4 and F5 algorithms by Faugère [Fau99; Fau02].
F4 is essentially a reformulation of the Buchberger algorithm that does batch processing using
efficient sparse linear algebra instead of polynomial manipulations. F5 strives to eliminate some
useless computations. Faugère’s algorithms have been successful in breaking some cryptosys-
tems, most notably an instance of HFE with n = 80 variables, which turned to be spectacularly
weak against Gröbner basis computations [FJ03].
Bardet described a simplified variant of the full-blown F5 algorithm in [Bar04; BFS15] (this

is called “matrix-F5”). This algorithm computes an echelon form of the degree-d Macaulay
matrix, using the F5-criterion to efficiently discard rows that belong to the linear span of the
rows above them. If the degree of regularity of the polynomial sequence is d, then it is commonly
admitted that the F5 algorithm terminates in less than

O
((

n+ d

d

)w)
operations over Fq. (16)

The point is that a row-echelon form of a Macaulay matrix of sufficiently high degree reveals
a Gröbner basis of the input polynomials. If they form a semi-regular sequence, it is sufficient to
choose d equal to the degree of regularity. In fact, the matrix-F5 algorithm processes a matrix
of the same size as the XL algorithm.
While the original Macaulay matrices are quite sparse, this is no longer the case once they have

been put into row echelon form. Special-purpose echelonization code and datastructures have
been designed to perform this task [BEF+16]. In any case, the F5 algorithm, or its simplified
variants, always involve dense linear algebra. This has two consequences.
First, it is not reasonnable to assume that RREF computation can be done in quadratic time

(at least, there is no known way to do so). Therefore, using ω = 2 as the linear algebra constant
is wrong with the F5 algorithm. Second, the result of the computation (the RREF) may be
fully dense, at least on non-pivotal columns, and therefore has large space requirements.
It follows that version 1.1.1 of the MQEstimator (using ω = 2 by default) underestimated the

cost of running the F5 and the hybrid-F5 algorithms by a huge margin. Version 1.2.0 of the
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MQEstimator (using ω = 2.81 by default) gives an accurate estimation of the behavior of the
matrix-F5 algorithm, but ignores the XL-Wiedemann algorithm.

However, forcibly setting ω = 2 in MQEstimator this time leads to a (slight) underestimation
of the running time: it is taken as N2 where N is the size of the matrix, whereas it is in fact
O
(
n2N2

)
using the block Wiedemann algorithm.

To the best of our knowledge, the only (serious) implementation of the full F5 algorithm is
FGb [Fau10]. It is closed-source and we do not have access to it. It further seems that it is not
maintained and no longer available online.
There are competitive implementations of F4, notably in the msolve (open-source) library [BES21]

and in the MAGMA (closed-source) computer algebra software [BCP97]. Note that F4 does not
enjoy the same provable complexity guarantees as F5. MAGMA is capable of solving polynomial
systems over F256 (and most other finite fields). On the other hand, msolve can only compute
a Gröbner basis over prime fields.
All these algorithms have exponential space complexity and existing implementation run into

memory limitations even for a moderate number of variables. Implementing them is non-trivial,
because they require either sophisticated data-structure for large-degree multivariate polyno-
mials and/or sparse linear algebra over large matrices. Existing implementations are usually
available inside full-blown computer algebra systems, which are large and complex software
projects.

The hybrid method. The “hybrid method” [BFP09; BFP12] is usually the best technique for
solving polynomial systems over finite fields. Its principle is simple:

1. Choose 0 ≤ k ≤ n.

2. “Guess” the value of k variables.

3. Solve the remaining system of m equations n − k variables using the F5 of the XL-
Wiedemann algorithm.

4. If no solution has been found, return to step 2.

The point is that the sub-systems that are actually solved in step 3 are more overdetermined
than the input system, and therefore have a much lower degree of regularity. The resulting
Macaulay matrices are thus much smaller.
There is an optimal number k of variables to guess. The asymptotic complexity of this

procedure is determined in [BFP12] when n→ +∞ with q and the ratio m/n fixed, under the
assumption that the input system is sufficiently generic. Concretely, the optimal number of
variables to guess depends on n,m, q and on the secondary algorithm used to solve the resulting
polynomial systems.

The “polynomial XL” algorithm of [FK24] This algorithm can be seen as a (slight) general-
ization of Crossbred. In the end, it uses the hybrid method combined with the XL algorithm,
but tries to perform a big precomputation to accelerate the subsequent resolution of polynomial
systems.
It partitions the n input variables x = (x1, . . . , xn) in two categories. Say that they are

relabeled as x = (y1, . . . , yk, z1, . . . , zn−k). The input polynomials are seen over the polynomial
ring Fq[y][z], i.e. as polynomials in the z’s whose coefficients are polynomials in the y’s. The
y’s are the variable that will be “guessed”, leading to a polynomial system in the z’s.
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The preprocessing step consists in finding at least α (linearly independent) degree-d polyno-
mials in the ideal spanned by the fi such that the total number of distinct monomials in the
z’s that appear in these new polynomials is at most α.

Once this is done, the y’s are fixed to a random value, and the resulting system of α polyno-
mial equations in the z’s can be solved by linearization, by considering each of the possible α
monomials as an independent variable.
The authors of Polynomial-XL (PXL) described a specific echelonization procedure to produce

these α polynomials. Hence, this uses dense linear algebra on Macaulay matrices.
There is an effective way to predict the value of α, as well as the total number of field

coefficient coefficients of the matrix after the end of the preprocessing. More precisely, assume
that k is chosen and let d denote the degree of regularity, i.e. the smallest integer d such that
Rd(n− k,m) ≥

(
n−k+d−1

d

)
, using the notations of section 4.2.1. Then α =

(
n+d
d

)
−
∑d

i=0Ri(n−
k,m).
In [FK24], the authors estimate the number of operation of their algorithm using either

ω = 2.37 or ω = 2.81. We believe that only the second choice is reasonable. In this case, the
gains claimed in [FK24] over the hybrid-XL-Wiedemann algorithm are modest (a factor of two
for the largest examples).
What PXL and Crossbred have in common is that they have a preprocessing step (based on

linear algebra in Macaulay matrices) that finds “special” polynomials in the ideal spanned by
the input equation. These special polynomials are restricted to only have certain monomials.
In Crossbred, the only allowed monomials are those where the z’s occur with degree at most

d. Thus, once the y’s are fixed, we are left with a degree-d polynomial system in n−k variables.
Existing practical implementations use d = 1, so the resulting linear system is small and easy
to solve.
In PXL, the choice of allowed monomials is a bit more flexible, as there is no fixed upper-

bound on their degree. The only condition is that their number must not be too large (once
the y’s are erased). In [FK24], the authors of PXL suggest a specific algorithm to select them,
but in fact they could be chosen somewhat arbitrarily. In most cases, there is a value of d that
yields almost the same number of polynomials with the Crossbred algorithm. The complexity
of both algorithms therefore cannot be very different.

Parameters, estimations and discussion. Table 11 shows our choice of parameters for q = 256,
along with our estimations of the complexity of running the (hybrid-)XL-Wiedemann (WXL)
algorithm and the “Polynomial XL” (PXL) algorithm.
Even though an implementation of WXL is available, it is both quite difficult and a bit

meaningless to predict its actual running time on a specific platform (e.g. “100 billion years
on a single core of an Intel Xeon Gold 6230”), if only because the computation is meant to
be infeasible. The actual obstacle to this more concrete estimate is the block-Wiedemann
algorithm.
In the context of the Number Field Sieve, the block-Wiedemann algorithm has been executed

in practice on a matrix of size 36M with 250 element per rows over a large finite field (to
compute a discrete log), and on a matrix of size 400M with 250 elements per row over F2 (to
factor RSA-250). Details of these computations are reported in [BGG+20]. In the context
of the XL-Wiedemann, it was executed on a matrix of size 45M over F31. Details of the
computation have been inferred by us, with some information available on the MQchallenge
website. The BW1 step requires days of sequential processing (100, 18 and 19 days for the
three described computations, respectively). By itself, this is a serious practical hurdle, and it
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Level I III V

n 48 72 96

WXL

k 2 4 7

D 22 28 33

log2N 58.5 80 99

log2 |A| 68.6 91.3 111.1

cost 150 210 273

PXL

k 5 7 9

D 17 24 30

log2 α 36 54.6 73

log2 |A| 86.5 128.9 169

cost 148 216 283

Table 11: Parameter choice with q = 256. For WXL, N denotes the size of the (sparse) matrix
and |A| denotes its number of non-zero coefficients. For PXL, α denotes the size of
the (dense) matrix with polynomial entries resulting from the preprocessing and |A|
denotes its number of field coefficients. In both cases, |A| is thus a reasonable estimate
of the size of the matrix.

is not completely obvious that the algorithm “practically” scales to larger sizes. In [BGG+20],
the authors conclude:

[...] with adequate parameter choices, large sparse linear systems occurring in NFS
computations can be handled, and at this point we are not facing a technology
barrier.

However, the matrix sizes considered above are many orders of magnitude larger than those
that have been dealt with in practice.
From a practical point of view, it is difficult to predict the actual running time (in hours)

of the block-Wiedemann algorithm, even when the computation is practical. The process is
well-known to be memory-bound or communication-bound, so the number of operations is not
necessarily well-correlated to the actual running time. Choosing the blocking factors is not
completely obvious either. If it is possible to measure the actual running time of one iteration,
then the actual running time of the algorithm can be fairly well evaluated. However, predicting
the time taken by the matrix-vector product is difficult: it depends on the hardware, on the
shape of the matrix, on the clustering of entries inside it, etc.

4.2.3 Special case of Boolean systems

Estimating the difficulty of solving Boolean polynomial system is challenging because of the
tension between “galactic” algorithms with the best asymptotic complexity and practically
efficient ones.
Exhaustive search is the baseline method to solve systems of Boolean quadratic polynomial

equations, with a running time Õ (2n) and negligible space complexity. An FPGA implemen-
tation of exhaustive search [BCC+13] was used to break LUOV in practice [DDV+21].
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Yang and Chen [YC04] discussed the asymptotic complexity of the hybrid method applied
to Boolean system (along with the optimal number of variables to guess). The BooleanSolve
algorithm of Bardet, Faugère, Salvy and Spaenlehauer [BFS+13] is the best embodiment of
the hybrid method at this point, with running time Õ

(
20.792n

)
on average, under algebraic as-

sumptions. It guesses some variables, then checks if a polynomial combination of the remaining
polynomials is equal to 1. If it is the case, then the guessed values are incorrect (by Hilbert’s
Nullstellensatz). Checking this is accomplished by deciding whether large sparse linear systems
have a solution (using the block-Wiedemann algorithm). The inventors of BooleanSolve claim
that it is slower than exhaustive search when n ≤ 200. However, this threshold should be
treated with caution in the absence of an implementation.
The Crossbred algorithm of Joux and Vitse [JV17] also belongs to the “guess variables then

solve a linear system” family of algorithms. Its asymptotic complexity is not precisely known,
but its practical efficiency is spectacular: it has been used to solve record-size random systems
with n = 83 variables and m = 186 equations, and with m = 76 equations in n = 114
variables. These are the current record. It is the first algorithm that has beaten brute-force
in practice on random non-overdetermined systems. The original implementation by Joux and
Vitse is not public. However, there are two public implementations: one that uses GPUs by
Niederhagen, Ning and Yang [NNY18], and another more competitive one by Bouillaguet and
Sauvage (https://gitlab.lip6.fr/almasty/hpXbred — this one holds the current records).
A completely different family of algorithms emerged in 2017 when Lokshtanov, Paturi, Tamaki,

Williams and Yu [LPT+17] presented a randomized algorithm of complexity Õ
(
20.8765n

)
based

on the “polynomial method”. In strong contrast with almost all the previous ones, it does not
require any assumption on the input polynomials, which is a theoretical breakthrough. The
algorithm works by assembling a high-degree polynomial that evaluates to 1 on partial solu-
tions, then approximates it by lower-degree polynomials. The technique was later improved by
Björklund, Kaski and Williams [BKW19], reaching Õ

(
20.804n

)
, then again by Dinur [Din21c],

reaching Õ
(
20.6943n

)
— this is “Dinur’s first algorithm”.

Noting that the self-reduction that results in this low asymptotic complexity only kicks in for
very large values of n, Dinur proposed a simpler, lightweight version of his algorithm for the
crypto community with complexity O

(
n220.815n

)
using n220.63n bits of memory [Din21a]. This

one is known as “Dinur’s second algorithm”.
The main problem in choosing parameters is to estimate the number of operations of Dinur’s

algorithms (the first one in particular). It would be possible to “play safe” by choosing n =
λ/0.6943, where λ is the desired security level, assuming that the hidden polynomial factors in
the “big Oh tilde” are equal to one. This suggests choosing n = 208 for security level I. But in
fact, the concrete number of operations required to run the algorithm is much higher than just
20.6943n.

The crossbred algorithm. Because of its practical success, it seems fair to asses the efficiency
of the Crossbred algorithm. We note that it is the first algorithm that has been capable of
“beating brute force” in practice.
Just like Polynomial XL, the Crossbred algorithm partitions the n input variables x =

(x1, . . . , xn) in two categories. Say that they are relabeled as x = (y1, . . . , yk, z1, . . . , zn−k).
Its preprocessing step returns polynomials in which the z variables only occur with degree d.
When the y variables are fixed to some value, we are left with a much smaller polynomial system
that can be solved by linearization. In practical implementations, d = 1.

Finding these polynomials can be seen as finding vectors in the (left-)kernel of a Macaulay
matrix in which some columns have been removed. It follows that there are essentially two

https://gitlab.lip6.fr/almasty/hpXbred
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cases: if d = 1, then the number of polynomials that must be found is small, and they can be
found efficiently by the block-Wiedemann algorithm. The Macaulay matrix remains in sparse
representation and linear algebra is essentially quadratic. Otherwise, if d ≥ 2, many kernel
vectors must be found and dense Gaussian elimination is the only reasonable way to find them.
In this case, the Macaulay matrix is in dense representation and linear algebra takes time
O (Nω).

We consider that the CryptographicEstimators library has several shortcomings in its estima-
tion of the complexity of Crossbred:

• It overestimates the space complexity by assuming a dense representation of the Macaulay
matrix in the preprocessing step, even when it considers the possibility of using the Wiede-
mann algorithm (that allows the use of a sparse matrix). The hpXbred implementation
uses a sparse matrix.

• It underestimate the running time of the exhaustive search phase by assuming that linear
algebra runs in nω operations, even when the matrices are very small (when d = 1), when
only the cubic algorithm makes sense.

• It overestimate the running time by ignoring the beneficial effect of external hybridation
(it allows to increase the number of variables that are not exhaustively searched — see
below).

• It overestimates the running time of the preprocessing step by assuming that the Wiede-
mann algorithm requires 3N matrix-vector products, when the block-Wiedemann algo-
rithm with proper parameter choice (m = 2n, n ≥ 4) can require ≤ 1.75N .

Here is an example of a slight overestimation by the CryptographicEstimators library (v2.0.0,
git commit 0d9bd3f925e):

>>> from cryptographic_estimators import MQEstimator

>>> pb = MQEstimator.MQProblem(n=160, m=160, q=2)

>>> MQEstimator.Crossbred(pb).time_complexity() # no external hybridation

151.16564211027884

>>> MQEstimator.Crossbred(pb, h=3).time_complexity() # start by guessing 3 variables

150.43226492985866 # the result is better

We have some practical experience with the Crossbred algorithm, acquired by assembling the
hpXbred high-performance implementation and using it to obtain all the current computational
records of the MQChallenge website over F2. In the process, we have developped our own
estimator (if only to choose parameters for actual computations).

An (unpublished) reduced-space hybrid method. It is well-known that, given a Boolean
quadratic polynomial f , it is easy to find an invertible matrix S (a linear change of variables)
such that (Sx) = x1x2+x3x4+ · · ·+xn−1xn+(linear terms). If all the variables with odd index
are “guessed”, then f(Sx) becomes linear. This allows to express one of the variables as a linear
function of the others, and reduces the number of variables (and of polynomial equations) by
one. It follows that a quadratic system with n equations in n variables can be solved by solving
2n/2 systems with n− 1 equations in n/2− 1 variables.
This technique can be improved. It follows from [MPG13, Proposition 3] that, given two

Boolean quadratic polynomials f and g, there is (often) a linear change of variables S such that
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f(Sx) and g(Sx) are simultaneously simplectic. It follows that guessing half of the variables
simultaneously turn f(Sx) and g(Sx) into linear functions. It follows that a quadratic system
with n equations in n variables can be solved by solving 2n/2 systems with n − 2 equations in
n/2− 2 variables.
This (unpublished) trick was used by the hpXbred implementation to obtain computational

records in the “underdetermined” challenges category (where many variables can be “guessed”
without reducing the success probability of the computation). The resulting subsystems are
quite overdetermined, and the Crossbred algorithm performs well in this case. We call the
resulting combination Crossbred+. It always requires much less space than the “normal” Cross-
bred and is usually almost as fast.

Dinur’s second algorithm. Because of the lack of any serious implementation, Dinur’s algo-
rithms pose the greatest challenge to a concrete estimation. This is probably not going to
change because it seems likely that these algorithms cannot be competitive for any computa-
tion that can be carried out in practice. Dinur’s second algorithm takes a parameter named n1
in [Din21b]. Write:

N =

n1+3∑
i=0

(
n− n1
i

)
The algorithm has two dominating phases:

1. It needs to find all solutions of N quadratic systems of n1 + 1 equations in n1 variables
(by brute force).

2. Then, a collection of n1 polynomials of degree n1+3 in n−n1 variables must be interpolated
and evaluated on all the 2n−n1 possible inputs. Each such polynomial has N coefficients.

The space requirement of the algorithm is essentially (n1 + 1)N bits (to store these large
polynomials). The value of n1 is chosen to balance the costs of these two phases. The first
phase is executed using the FES algorithm. To perform the second phase, Dinur described a
memory-efficient version of the Moebius transform that evaluates a degree-d polynomial in n
variables on all the 2n possible inputs in time less than n2n, using only twice the amount of
memory needed to store the polynomial. We believe that the number of bit operations needed
to complete the interpolation is quite underevaluated in [Din21b], for the following reason. It
is stated in [Din21b] that:

We estimate the complexity of a straight-line implementation of our algorithm by
counting the number of bit operations (e.g., AND, OR, XOR) on pairs of bits. This
ignores bookkeeping operations such as moving a bit from one position to another
(which merely requires renaming of variables in straight-line programs).

In other terms, a statement such as:

A[2015494782137237151]← A[8910305899308506505]⊕A[14034715819129815024]

counts as a single bit operation. The time complexity of the attack is taken as the number of
such statements. The problem is that this computational model is non-uniform: each statement
representing a single bit operation contains three n-bit memory adresses that are “hard-coded”
into the “code” of the procedure. The size of the procedure itself, measured in bits, is then larger
than its number of statement by a factor of about 3n. Generating the code of the procedure is
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clearly more costly than executing it (in fact, the code may contain an “advice” of size linear
in that of the input). At first glance, it is not really obvious how to compute the array indices
“on the fly”.
Bouillaguet [Bou24] has shown that the memory-efficient Möbius transform described by

Dinur in [Din21b] can be implemented in the C language (with a single, fixed program for all
possible input sizes) with a running time of O (d2n) “elementary” operations on n-bit words
(mostly additions). But this clearly requires more bit operations than the number claimed
in [Din21b]. Experiments in [Bou24] suggest at least 20 CPU cycles per “bit operation”. There-
fore, we (optimistically) consider that the cost of the memory efficient Möbius transform is
about 20nd2n “gates” (this assumes that an elementary operation on n-bit words translates to
exactly n gates).
In addition, we expect the space requirements to make the algorithm completely impractical.

Dinur’s first algorithm. While having the best asymptotic complexity, Dinur’s first algorithm
suffer from a high concrete complexity for relevant instance sizes. In general, the algorithm
returns the parity of the number of solutions (“does the polynomial system have an odd number
of solutions?”). If we assume that the polynomial system has at most one solution, then this
solves the decisional version of the problem (“does the system have a solution?”). The search-
to-decision reduction “guesses” the first variable and checks if a solution still exists. It then
proceeds with one less variable.

The algorithm is recursive, and each recursive calls need to choose a parameter (n1 at the
root, n2 below). We searched for the best values exhaustively and implemented an estimator
to determine its number of operations.
We applied the same penalty of a factor 20n to the Möbius transform as in Dinur’s first

algorithm.
We believe that, because the algorithm is complex and has never been implemented, any

concrete estimation of its complexity should be taken with caution. Further “practical” im-
provements may be discovered if an implementation is ever attempted. However, the huge
space complexity of the algorithm makes this unlikely.

Parameters, estimations and discussion. Using the hpXbred software, the running time of
the Crossbred+ algorithm on the level-I parameter set can be determined on currently existing
hardware. It solves 286 subsystems of 158 quadratic equations in 72 variables. Solving each
subsystem requires 2375 CPU.h on a single machine (a PowerEdge C6420 blade equipped with
two Intel Xeon Gold 6130 CPUs). This makes a total of 2× 1025 CPU-years on this hardware
platform. More precisely, the running times breaks down as follows:

1. BW1: 685 CPU.h

2. BW2: 25 CPU.h

3. BW3: 140 CPU.h

4. Enumeration: 1525 CPU.h

The matrix processed by the block-Wiedemann algorithm has dimension 8.86M and 6.5G
non-zero entries. The BW1 and BW3 step total 258 operations, that are executed at about
99.25Gop/s by the machine. The enumeration step has 260.3 operations that are executed at
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Level I III V

n 160 240 320

Crossbred

h 3 4 3

D 13 20 27

k 31 44 56

log2N 61.7 95.9 130

log2 |A| 75.3 111 145

Cost 144 213 282

Crossbred+

h 86 122 160

D 5 8 11

k 26 38 51

log2N 23.6 39.2 54.6

log2 |A| 37.3 54 70.4

Cost 147 216 285

Dinur 1st

n1 39 58 80

n2 33, 0 52, 41, 33, 0 74, 61, 51, 43, 36, 31, 0

Space 129 190 248

Cost 160 223 283

Dinur 2nd

n1 34 49 64

Space 107 158 208

Cost 148 214 280

Table 12: Parameter choice with q = 2.



MQOM: MQ on my Mind 51

260.6Gop/s by the machine. The difference is most likely explained by the fact that the block-
Wiedemann algorithm suffers more from the cost of memory accesses. Note that the peak
performance of a single core is about 2150Gop/s (2 × 512-bit AND per cycle at 2.1GHz).
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5 Design choices

This section presents the design rationale of MQOM v2 in relation to the existing literature.
Recent advancements in the field have led to signature schemes that are more efficient, more
compact, and (sometimes) inherently simpler than their predecessors. We explain the rationale
behind our design choices, which were made with an emphasis on simplicity in both design and
implementation.

5.1 Threshold-Computation-in-the-Head

The design of MQOMv1 relied on the MPC-in-the-Head paradigm with additive sharings. Since
then, two new frameworks have been introduced: the VOLE-in-the-Head (VOLEitH) frame-
work [BBD+23] and the Threshold-Computation-in-the-Head (TCitH) framework [FR23b]. These
new frameworks provide MQ-based signatures that are roughly half the size of MQOMv1 sig-
natures, while also reducing computational costs. For these reasons, we decided to adopt one
of these two frameworks in the development of MQOM v2.

TCitH vs. VOLEitH. While the line commitment scheme in TCitH-GGM only supports
opening evaluations over a small domain Ω (with |Ω| = N being the size of the GGM tree), the
VOLEitH framework supports evaluations over a domain of size N τ by combining τ instances
of the small-domain line commitment scheme. As a result, VOLEitH achieves a soundness
error of 2

Nτ , compared to
(
2
N

)τ
with the TCitH-based protocol repeated τ times. This implies

that, for a given security level, τ can be slightly smaller in VOLEitH, often leading to reduced
communication costs compared to TCitH-GGM.
On the other hand, the resulting large-domain line commitment scheme of VOLEitH requires

a statistical consistency test, introducing an additional round of interaction between the prover
and verifier in the underlying ZK PoK protocol. This slightly increases the overall communi-
cation and necessitates working over a large field extension (typically a λ-bit extended field).
For signature schemes with a small secret witness –which is the case of the MQ solution x
in MQOM–, this slight increase mitigates the TCitH overhead. As a consequence, the TCitH
framework remains competitive in terms of signature size while enjoying a structurally simpler
design.
In Table 13, we present the signature sizes for a variant of MQOM v2 based on the VOLEitH

framework. We apply the same optimizations to this variant as in the TCitH-based version,
including correlated trees and grinding (see the following subsections). Our results show that
the short signature variants yield comparable sizes across both frameworks, while the fast signa-
ture variants are slightly smaller with the VOLEitH framework. Given this close proximity in
signature size and the greater simplicity of the TCitH framework (no consistency check, smaller
field extension), we ultimately chose to adopt the TCitH framework.

The sigma variant. In the considered PIOP protocol (see Section 2.1.2), the first verifier
challenge is designed to batch multiple polynomials in order to reduce their communication
cost. Instead of sending the m coordinates of the vector polynomial Pz (masked with Pu), the
prover sends η < m random linear combinations of them, that is the vector polynomial Γ · Pz

(still masked with Pu, which is the vector polynomial Pα). We observed that the size saving
due to this batching interaction is rather small for MQOM, in particular for the F2 instances.
On the other hand, skipping the batching interaction results in a protocol with lower round
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Framework MQOM2 – TCitH VOLEitH

Statistical Batching Without (3r) With (5r) Without (3r) With (5r)

MQOM2-L1-gf2-short 2 868 2 820 2 966 (+3%) 2 822 (+0%)

MQOM2-L1-gf256-short 3 540 3 156 3 450 (-3%) 3 130 (-1%)

MQOM2-L1-gf2-fast 3 212 3 144 3 294 (+3%) 3 086 (-2%)

MQOM2-L1-gf256-fast 4 164 3 620 3 954 (-5%) 3 506 (-3%)

MQOM2-L3-gf2-short 6 388 6 280 6 788 (+6%) 6 428 (+2%)

MQOM2-L3-gf256-short 7 900 7 036 7 910 (+0%) 7 142 (+2%)

MQOM2-L3-gf2-fast 7 576 7 414 7 484 (-1%) 6 980 (-6%)

MQOM2-L3-gf256-fast 9 844 8 548 9 002 (-9%) 7 946 (-7%)

MQOM2-L5-gf2-short 11 764 11 564 12 170 (+3%) 11 498 (-1%)

MQOM2-L5-gf256-short 14 564 12 964 14 194 (-3%) 12 786 (-1%)

MQOM2-L5-gf2-fast 13 412 13 124 13 370 (-0%) 12 442 (-5%)

MQOM2-L5-gf256-fast 17 444 15 140 16 098 (-8%) 14 178 (-6%)

Table 13: Comparison of MQOM v2 with its variant over VOLEitH. All the signature size are
in bytes.

complexity, 3 instead of 5, and arguably simpler design.1 We have chosen to propose both
options –with and without batching interaction– in the development of MQOM v2. Namely, we
propose a 3-round variant (the “sigma variant”) and a 5-round variant of MQOM. The 5-round
variant features smaller signature sizes while the 3-round variant is simpler, easier to implement
and could be more amenable in some specific contexts due to its lower round complexity. To
the best of our knowledge, the sigma variant of MQOM v2 is the first MPCitH-based scheme
built upon a sigma protocol (which does not rely on a protocol with helper [Beu20]).

Witness encoding as constant term versus as leading term. In the TCitH and VOLEitH
frameworks, we encode the secret witness x in a polynomial Px. There are two main options
for encoding: either we construct Px so that Px(0) = x, encoding the witness as the constant
term, or we define Px so that Px(∞) = x, encoding the witness as the leading term.
The TCitH framework [FR23b] originally suggested encoding the witness as the constant term,

which is the most traditional approach in the literature when using Shamir’s secret sharing. In
contrast, the VOLEitH framework suggests encoding the witness as the leading term of the
(degree-1) polynomial. However, both frameworks do not mandate a specific encoding; we
can choose to encode the witness as the leading term in TCitH and as the constant term in
VOLEitH.
Each option has its advantages and disadvantages. Encoding the witness as the constant

term requires special handling to avoid evaluation at the zero point, and we must use “infinity”
point when N = |F|. It also necessitates dealing with the inversion of some publicly known
field elements. On the other hand, encoding the witness as the leading term results in a simpler
implementation since no inversion is required and we avoid the special “infinity” point when
N = |F|. This makes it possible to use the canonical injection of {0, . . . , N−1} into field elements
for Ω. However, this approach results in a slightly higher number of field multiplications,

1With the VOLEitH framework, skipping the batching interaction also lowers the round complexity from 7 to
5.
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as we need to account for the homogeneous form of the MQ constraints. For the sake of
implementation simplicity, we have chosen to encode the witness as the leading term of Px in
MQOM v2.

5.2 GGM trees

Recent improvements have made the arithmetic part of MPCitH-based signature schemes more
efficient, shifting the computational and communication bottleneck to the symmetric part, par-
ticularly GGM trees. Consequently, several recent works have focused on optimizing the sym-
metric part, primarily by improving all-but-one vector commitments based on GGM trees.

Half-Tree technique [GYW+23; CLY+24; BCD24]. The half-tree technique has been pro-
posed in [GYW+23] and has been first introduced in to the MPCitH context in [CLY+24;
BCD24]. This technique aims to optimize the tree derivation, i.e. how two children nodes are
generated from the parent node. Instead of using a double-length pseudorandom generator, it
consists of deriving the first child y from the parent x using a symmetric primitive and building
the second child z as z := x ⊕ y, where ⊕ is the XOR operation. This derivation maintains
the core security property of tree derivation: revealing one child node should not disclose any
information about its sibling. Specifically, if revealing y does not leak information about x, then
it also does not reveal anything about z = y ⊕ x, as x masks it. Likewise, revealing z does not
disclose any information about y = x⊕ z.

In MQOM v2, we use the half-tree optimization to halve the cost of the tree derivation and
because it unlocks a second optimization described below.

Correlated Trees [HJ24; KLS24]. Besides the computational advantage of the half-tree tech-
nique, the latter has an interesting property: a tree derivation when using the half-tree preserves
the XOR. It implies that the XOR of all the nodes at a same depth is the same across the en-
tire tree. This means that the committer can control the XOR-sum δ of all the leaf seeds (by
originally introducing this difference between the two child nodes of the root). Then, replacing
the pseudorandom tape PRG(seed) by seed ∥ PRG(seed), the XOR-sum δ is further enforced to
the λ first bits of the random tapes. This makes it possible to save λ bits of communication in
the correction value ∆x by fixing δ to the λ first bits of x, thus leading to shorter signatures.

In MQOM v2, we use this optimization, namely we use correlated trees to save τ · λ bits in
the signature.

One-tree optimization [BBM+24]. Some combinatorial optimizations of the GGM trees has
been proposed in [BBM+24]. The MPCitH/TCitH/VOLEitH-based schemes always use τ GGM
trees. For each of them all the leaves except one are opened. Instead of considering τ indepen-
dent GGM trees of N leaves in parallel, the authors of [BBM+24] suggest using a unique large
GGM tree of τ ·N leaves. The ith leaf of the eth tree becomes the (e ·N + i)th leaf of the large
unique tree. As explained in [BBM+24], “opening all-but-τ leaves of the big tree is more efficient
than opening all-but-one leaves in each of the τ small trees because with high probability some
of the active paths in the tree will merge relatively close to the leaves, which reduces the number
of internal nodes that need to be revealed.” Then, the authors propose to improve the previous
point using some rejection sampling and grinding. When the last Fiat-Shamir challenge is such
that the number of releaved nodes in the revealed sibling paths exceeds a threshold, the signer
rejects the challenge and recompute the hash with an incremented counter. This process is
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repeated until the number of revealed nodes is below the fixed threshold. One can show that
the approach leads to secure scheme even if the challenge space is reduced, because the security
loss is compensated by the computational cost of searching a valid challenge.

Let us stress that this optimization is not compatible with the correlated-tree optimization.
In MQOM v2, we did not consider this optimization because it complicates the design and
implementation. First, using this large tree of τ ·N prevents from using a complete binary tree
(since τ is usually not a power of 2), and so one needs to handle leaves of different depths. Then,
while conceptually easy to understand, this optimization requires dealing with path merging
which is tricky in terms of implementation. Finally, while path merging saves communication,
it introduces variability in the signature size, which we prefer to avoid.

Relaxed vector commitment [KLS24]. A recent work [KLS24] proposes a new idea to slightly
improve the efficiency of GGM-tree all-but-one vector commitments. It consists in relaxing the
vector commitment scheme by committing each leaf of the GGM trees using λ-bit digests instead
of 2λ-bit digests. While this relaxation breaks the standard notion of binding, the authors
show that using such a relaxed commitment scheme within a signature scheme still leads to
the desired security. The high-level principle is the following: instead of properly binding the
tree leaves, this relaxed commitment scheme binds the height-1 nodes (the parent nodes of the
leaves) using the fact that the 2 (λ-bit) commitment digests of the two children form a 2λ-bit
commitment digest for the parent node, which prevents the prover to get collisions over those
nodes. Moreover, the authors show that the prover can have at most 2λ/ log2 λ preimages of
the leaf commitment. By counting the number of possible openings, the authors show that the
relaxed vector commitment can be opened to at most u := 2N(λ/ log 2λ)2 different witnesses.
This relaxed opening degrades the soundness of the proof system by an offset of log2 u bits. This
security loss can be compensated by increasing the scheme parameters while still benefitting
from a decreased signature size.

We did not include this optimization in MQOM v2 but we will consider it for a future update
after careful analysis of its security and adaptation to the TCitH context. We could expect a
saving of around 200 bytes in the signature size (for the first security level).

5.3 Grinding

Together with the one-tree optimization, [BBM+24] suggests using an explicit proof-of-work to
the Fiat-Shamir hash computation of the query challenge, whihc is known as grinding [Sta21].
Together with the query challenge, the signer samples a w-bit value which should be zero, for
w a parameter of the scheme. If this value is not zero, the signer rejects the query challenge
and recompute the hash with an incremented counter, until a zero value is found. This strategy
increases the cost of hashing the last challenge by a factor 2w which translates to decreasing the
soundness error by a factor 2−w. As a consequence, one can lower the GGM tree parameters to
achieve a soundness of λ− w bits instead of λ.

We use the grinding optimization in MQOM v2. We chose the grinding parameter w in order
to decrease the number of repetitions (τ).

5.4 Symmetric primitives

For most of the symmetric primitives involved in the signature scheme, there are two possible
options to instantiate them: either we use an extendable output hash function (XOF), or we use
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a block cipher. While the first version of MQOM solely relied on XOF, we changed for mainly
using a block cipher in MQOM v2 for performance reasons. Specifically, we aim to leverage the
AES hardware instructions available on modern CPUs. While the easiest choice would then
be to use AES-λ as block cipher (e.g. as counter mode for the PRG), this choice implies a
128-bit distinguisher whatever λ because of the fixed 128-bit block-size of AES. As a result, the
EUF-CMA advantage can only be upper bounded by 2−128 whatever the target security λ.

To avoid this issue, we use a block cipher with higher block size for Categories III and V,
namely Rijndael-256-256 (with truncation for λ = 192). The latter cipher also benefits from
fast implementation using AES hardware instructions. Moreover, using a cipher with a λ-bit
key-size and λ-bit block-size, we can use a (partial) fixed-key mode in the seed derivation with
a Davies-Meyer construction. This further improves the performances by saving some costly
key schedules.
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6 Advantages and limitations

Bad news first, the MQOM signature scheme suffers the following limitations:

• Relatively slow: As other MPCitH based scheme, MQOM is relatively slow, with sign-
ing and verification time ranging between 2 and 14 magacycles (0.9 – 5.6 ms AMD Ryzen
Threadripper PRO 7995WX processor) for NIST security category 1. This is slow com-
pared to lattice-based signatures. One of the reason is the greedy use of symmetric
cryptography.

• Quadratic growth in the security level: As other MPCitH-based signature schemes,
or, more generally, as other schemes applying the Fiat-Shamir transform to a parallelly
repeated ZK-PoK with non-negligible soundness error, MQOM suffers a quadratic growth
of the signature size. In practice, the size of MQOM signatures roughly doubles while
going from Category I to Category III and while going from Category III to Category V
as well.

On the other hand, MQOM benefits of the following advantages:

• Conservative hardness assumption: Being generic, the MPCitH approach can be
applied to any problem on does not rely on structured problems to introduce a trapdoor.
MQOM benefits this by relying on a full random instance of the MQ problem which is
believe to be a conservative hardness assumption.

• Small (public) keys: Thanks to the unstructured feature of the MQ instance, it can be
mostly derive from a random seed. Hence the public key is only composed of a λ-bit seed
and the relatively-short output y of the MQ system. The secret key additionally includes
the relatively-short input x of the MQ system (which can further be fully compressed as
the root seed of the key generation).

• Highly parallelizable: As other schemes based on the MPCitH paradigm, MQOM is
highly parallelizable. Most of the computation can be done in parallel for the τ repetitions
and computation can be further parallelized inside a repetition (arithmetic computation,
seed trees and commitments).

• Good public key + signature size: As other schemes based on the MPCitH paradigm,
MQOM achieves a good score in terms of “public key + signature size” metric compared
to other candidate post-quantum signature schemes.

• Relatively small signatures: The last generation of MPCitH-based signature schemes
in the literature (at time of writing) has signature sizes ranging on 2.5–5 KB (for 128-
bit of security). MQOM is on the lower side of this range, with 2.8–3.6 KB. Moreover,
MPCitH-based signatures achieving lower sizes are based on arguably less conservative
assumptions such as e.g. recent dedicated symmetric designs.
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